Browse > Article
http://dx.doi.org/10.5573/JSTS.2010.10.1.066

Metal Insulator Gate Geometric HEMT: Novel Attributes and Design Consideration for High Speed Analog Applications  

Gupta, Ritesh (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus)
Kaur, Ravneet (Acharya Narendra Dev College, University of Delhi Department of Electronics)
Aggarwal, Sandeep Kr (HRMITM, GGSIP University)
Gupta, Mridula (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus)
Gupta, R.S. (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus)
Publication Information
Abstract
Improvement in breakdown voltage ($BV_{ds}$) and speed of the device are the key issues among the researchers for enhancing the performance of HEMT. Increased speed of the device aspires for shortened gate length ($L_g$), but due to lithographic limitation, shortening $L_g$ below sub-micrometer requires the inclusion of various metal-insulator geometries like T-gate onto the conventional architecture. It has been observed that the speed of the device can be enhanced by minimizing the effect of upper gate electrode on device characteristics, whereas increase in the $BV_{ds}$ of the device can be achieved by considering the finite effect of the upper gate electrode. Further, improvement in $BV_{ds}$ can be obtained by applying field plates, especially at the drain side. The important parameters affecting $BV_{ds}$ and cut-off frequency ($f_T$) of the device are the length, thickness, position and shape of metal-insulator geometry. In this context, intensive simulation work with analytical analysis has been carried out to study the effect of variation in length, thickness and position of the insulator under the gate for various metal-insulator gate geometries like T-gate, $\Gamma$-gate, Step-gate etc., to anticipate superior device performance in conventional HEMT structure.
Keywords
InAlAs/InGaAs HEMT; metal-insulator geometries; breakdown voltage; cut-off frequency and maximum frequency of oscillations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 ATLAS Device Simulator, Silvaco Int., Santa Clara, CA, Spring-2003.
2 Ritesh Gupta, Sandeep kr Aggarwal, M. Gupta and R. S. Gupta, “Analytical Model for Metal insulator Semiconductor High Electron Mobility Transistor (MISHEMT) for its high frequency and high power applications,” Journal of Semiconductor Technology and Science (JSTS), Vol.6, No.3, pp.189-198 September 2006.
3 Ritesh Gupta, A. Kranti, S. Haldar, M. Gupta and R. S. Gupta, “An Analytical parasitic resistance dependent $I_{d}-V_{d}$ model for Planar doped InAlAs/InGaAs/InP HEMT using Non-linear Charge control Analysis,” Microelectronic Engineering, Vol.60, pp. 323-337 2002.   DOI   ScienceOn
4 Ritesh Gupta, Servin Rathi, Ravneet Kaur, Mridula Gupta, R.S. Gupta, “ T-gate geometric (solution for submicrometer gate length) HEMT: Physical analysis, modeling and implementation as parasitic elements and its usage as dual gate for variable gain amplifiers”, Superlattice and Microstructures Vol.45, pp.105-116, 2009.   DOI   ScienceOn
5 A. Lepore, M. Levy, H. Lee, and E. Kohn, “Fabrication and Performance of 0.1-pm Gate-Length AlGaAs/GaAs HEMT’s with Unity Current Gain Cutoff Frequency in Excess of 110 GHz,” IEEE Trans Electron Device, Vol.35, No.12, p.2441 December 1988.   DOI
6 Shreepad Karmalkar, Michael S. Shur, Grigory Simin, and M. Asif Khan, “Field-Plate Engineering for HFETs,” IEEE Trans Electron Devices, Vol.52, 2005, Pp. 2534-2540.   DOI   ScienceOn
7 N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure,” IEEE Electron Device Lett., Vol.21, No.9, September 2000, pp.421-423.   DOI   ScienceOn
8 Shreepad Karmalkar, Jianyu Deng, Michael S. Shur, and Remis Gaska “RESURF AlGaN/GaN HEMT for High Voltage Power Switching,” IEEE Electron Device Lett., Vol.22, No.8, August 2001, pp.373-375.   DOI   ScienceOn
9 Shreepad Karmalkar and Umesh K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Trans Electron Devices, Vol.48, No.8, August 2001, pp. 1515-1521.   DOI   ScienceOn
10 Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, and M. Kuzuhara, “10-W/mm AlGaN-GaN HFET With a Field Modulating Plate,” IEEE Electron Device Lett., Vol.24, No.5, May 2003, pp.289-291.   DOI   ScienceOn
11 Shreepad Karmalkar and N. Soudabi, “A Closed-Form Model of the Drain-Voltage Dependence of the OFF-State Channel Electric Field in a HEMT With a Field Plate,” IEEE Trans Electron Devices, Vol.53, No.10, October 2006, pp. 2430-2437.   DOI   ScienceOn
12 Huili Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Lett., Vol.25, No.4, April 2004, pp. 161-163.   DOI   ScienceOn
13 Y. C. Chou, et al, “Reliability Investigation of 0.07-${\mu}m$ InGaAs-InAlAs-InP HEMT MMICs With Pseudomorphic $In_{0.75}Ga_{0.25}As$ Channel,” IEEE Electron Device Letters, Vol. 24, No.6, p.378 June 2003.   DOI   ScienceOn
14 Ritesh Gupta, Sandeep kr Aggarwal, M. Gupta and R. S. Gupta, “Short Channel Analytical Model for High Electron Mobility Transistor to obtain Higher Cut-Off Frequency maintaining the Reliability of the Device,” Journal of Semiconductor Technology and Science (JSTS) Vol. 7, no.2, pp. 120-131 June 2007.   DOI   ScienceOn
15 Ming-Jyh Hwu, Hsien-Chin Chiu, Shih-Cheng Yang, and Yi-Jen Chan, “A Novel Double-Recessed 0.2-_m T-Gate Process for Heterostructure InGaP-InGaAs Doped-Channel FET Fabrication,” IEEE Electron Device Letters, Vol.24, No.6, p.381 June 2003.   DOI   ScienceOn
16 D.S. Wen, C.C-H. Hsu, Y. Taur, D.S. Zicherman, M.R. Wordeman, and T.H. Ning, “A Self-Aligned Inverse-T Gate Fully Overlapped LDD Device for Sub-Half Micron CMOS,” IEDM Tech. Dig., p.766-769. 1989.
17 G. H. Jessen, et al, “High Performance 0.14 ${\mu}m$ Gate-Length AlGaN/GaN Power HEMTs on SiC,” IEEE Electron Device Letters, Vol.24, No.11, p.677 November 2003.   DOI   ScienceOn
18 S. J. Koester, R. Hammond, and J. O. Chu, “Extremely High Transconductance $Ge/Si_{0.4}Ge_{0.6}$ p-MODFET’s Grown by UHV-CVD,” IEEE Electron Device Letters, Vol.21, No.3, p.110 March 2000.   DOI   ScienceOn
19 D. Geiger et al, “InGaP/InGaAs HFET with High Current Density and High Cut-Off Frequencies,” IEEE Electron Device Letters, Vol.16, No.6, p.259 June 1995.   DOI   ScienceOn
20 W.-S. Lour, Member, IEEE, W. L. Chang, Y. M. Shih, and W. C. Liu, “New Self-Aligned T-Gate InGaP/GaAs Field-Effect Transistors Grown by LP-MOCVD,” IEEE Electron Device Letters, Vol.20, No.6, p. 304 June 1999.   DOI   ScienceOn
21 Aldo Di Carlo, Lorenzo Rossi, Paolo Lugli, Gunther Zandler, Gaudenzio Meneghesso, Mike Jackson and Enrico Zanoni, “Monte Carlo Study of the Dynamic Breakdown Effects in HEMT’s,” IEEE Electron Device Letters, Vol.21, No.4 April 2000, 149-151.   DOI   ScienceOn
22 T. Enoki, H. Yokoyama, Y. Umeda and T. Otsuji, “Ultrahigh-Speed Integrated Circuits Using InP Based HEMTs,” Jpn. J. Appl. Phys., Vol.37, pp.1359-1364 1998.   DOI
23 K. L. Tan et al, “140 GHz $0.1{\mu}m$ Gate-length pseudomorphic InAlAs/InGaAs/InP HEMT,” IEEE IEDM Tech. Digest, 1991 p. 239.
24 Sandeep R. Bahl, Jesus A. del Alamo, Jurgen Dickmann and Steffen Schildberg, “Off State Breakdown in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron Device, Vol.42, No.1, January 1995 15-22.   DOI   ScienceOn
25 Mark H. Somerville, Chris S. Putnam and Jesus A. del Alamo, “Determining dominant breakdown mechanisms in InP HEMTs,” IEEE Electron Device letters, Vol.22, No.12, December 2001 565-567.   DOI   ScienceOn
26 M. Borgarino, R. Menozzi, D. Dieci, L. Cattani and F. Fantini, “Reliability physics of compound semiconductor transistors for microwave applications,” Microelectronics Reliability Vol.41, 2001, 21-30.   DOI   ScienceOn
27 Gaudenzio Meneghesso and Enrico Zanoni, “Failure modes and mechanisms of InP-based and metamorphic high electron mobility transistors,” Microelectronic reliability, Vol.42, 2002, 685-708.   DOI   ScienceOn
28 Ammar Sleiman, Aldo Di Carlo, Paolo Lugli, G. Meneghesso, E. Zanoni and J. L. Thobel, “Channel Thickness dependence of Breakdown Dynamic in InP-based lattice-Matched HEMTs,” IEEE Trans. Electron Device, Vol.50, No.10, October 2003 2009-2014.   DOI   ScienceOn
29 K. Higuchi, H. Matsumoto, T. Mishima and T. Nakamura, “High Breakdown voltage InAlAs/InGaAs High Electron Mobility Transistors on GaAs with Wide Recess Structure,” Jpn. J. Appl. Phys. Vol. 38, 1999, pp.1178-1181.   DOI
30 Y. C. Lien et al, “Low-Noise Metamorphic HEMTs with Reflowed 0.1-${\mu}m$ T-Gate,” IEEE Electron Device Letters, Vol.25, No.6, p.348 June 2004.   DOI   ScienceOn
31 K. Elgaid, H. McLelland, M. Holland, D. A. J. Moran, C. R. Stanley, and I. G. Thayne, “50-nm T-Gate Metamorphic GaAs HEMTs With $f_T$ of 440 GHz and Noise Figure of 0.7 dB at 26 GHz,” IEEE Electron Device Letters, Vol.26, No.11, p.784 November 2005.   DOI   ScienceOn
32 Sandeep R. Bahl and Jesus A. del Alamo, “Physics of Breakdown in InAlAs/$n^{+}$ - InGaAs Heterostructure Field -Effect Transistors,” IEEE Trans. Electron Devices, Vol.41, No.12, December 1994 2268-2275.   DOI   ScienceOn
33 D. F. Weslch, G. W. Wicks, and L. F. Eastman, “Calculation of the conduction band discontinuity for InAlAs/InGaAs heterojunction,” J. Appl. Phys., Vol. 55, p.3176 1984.   DOI   ScienceOn
34 K. Y. Chen, A. Y. Cho, S. G. Christman, T. P. Pearsall and J. E. Rowe “Measurement of the ${\Gamma}$-L separation in InGaAs by ultraviolet photoemission,” Appl. Phys. Lett., Vol.40, p. 423 1980.