• Title/Summary/Keyword: Biodegradable polymer

Search Result 422, Processing Time 0.033 seconds

Biodegradable polymeric drug delivery systems

  • Jeong, Seo-Young;Kim, Sung-Wan
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The use of biodegradable polymetric materials as drug carriers is a relatively new dimension in polymeric drug delivery systems. A number of biodegradable or bioerodible polymers, such as poly(lactic/glycolic acid) copolymer, poly($\alpha$-amino acid), polyanhydride, and poly (ortho ester) are currently being investigated for this purpose. These polymers are useful for matrix and reservoir-type delivery devices. In addition, when chemical functional groups are introduced to the biodegradable polymer backdone, such as poly (N-(2-hydroxypropyl) methacrylamide), the therapeutic agent can be covalently bound directly or via spacer to the backbone polymer. These polymer/drug conjugates represent another new dimension in biodegradable polymeric drug delivery systems. In addition, examples of biodegradable polymeric durg delivery systems currently being investigated will be discussed for the purpose of demonstrarting the potential importance of this new field.

  • PDF

Determination of the Water Uptake Rate into Biodegradable Polymer (생분해성 고분자로의 물의 유입속도 측정)

  • Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.223-226
    • /
    • 1995
  • A new method to study water uptake into biodegradable polymer was developed. Polymer was gently mixed with the tritiated buffer and the radioactivity level of the polymer due to water uptake was measured by liquid scintillation counting. The rate of water uptake was estimated from the plot of the amount of water in the device as a function of time. The technique used in this study is particularly useful for estimating water uptake of biodegradable polymers which were difficult to study by other techniques such as weight gain used for hydrogel.

  • PDF

Determination of Erosion Rate of the Biodegradable Polymer (생분해성 고분자의 부식속도 측정)

  • Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.295-297
    • /
    • 2000
  • A new method to evaluate erosion of biodegradable polymer, polyanhydrides, was developed. The polymer devices were prepared with the melt-casting method and weight loss was accurately measured after agitating the devices in buffers (pH 1-9), and removing the device at selected time intervals and freeze-drying the device. The erosion rate was estimated from the plot of the weight loss(%) of device as a function of time. The freeze-drying technique used in this study is particularly useful for estimating the erosion rate of biodegradable polymer.

  • PDF

Preparation of Base Paper for Mulching Mat Sheet Using Biodegradable Polymer (생분해성 고분자를 이용한 조림묘목용 멀칭매트 원지 제조)

  • Lee, Geum-Ja;Park, Ji-Hyun;Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Mulching technique is used to control the temperature and moisture content of soil by covering the ground surface. Most kinds of mulching film are made of polyethylene which is non-biodegradable synthetic polymer. Utilizing these films has been one of the main sources in soil pollution. Thus residual films under the ground should be removed after a certain period of time. Therefore, an alternative mulching material made of biodegradable functional paper is considered instead of non-biodegradable films. The mulching sheet produced from paper basis has a functionality to be naturally degraded and then recycled to the bio-materials on soil. In this study, the paper based-mulching sheet coated with biodegradable polymer was specially produced using a laboratory bar coater. Coating colors prepared by dissolving PBS/PLA in chloroform were applied to kraft paper. The mechanical strength and aging properties of this mulching sheet were investigated. The burst strength of polymer-coated paper was decreased with the increase of the PBS ratio in PBS/PLA blends, and, in particular, 30/70 blending condition led to good stability in heat-aging atmosphere for 60 days.

Preparation of Emulsion from Biodegradable Polymer(II) - Characteristics of paper treated as PLA and PBS emulsion - (생분해성 고분자를 이용한 발수 에멀션의 제조(II) - PLA 및 PBS 에멀션 코팅 과일봉지의 물성 비교 -)

  • Kim, Kang-Jae;Lee, Min-Hyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, two biodegradable polymer(PLA, PBS) emulsions were treated on agricultural packaging paper such as fruit bagging paper. Water-repellency, mechanical properties, and SEM image with thermal aging were measured on the emulsion treated fruit bagging paper. Biodegradable polymers(such as poly lactic acid, poly butylene succinate) emulsion treated fruit bagging paper had higher water-repellency and strength than other water-repellent(such as acrylic repellent, linseed oil and paraffin wax) treated fruit bagging paper. According to FE-SEM results of polymer emulsion coated fruit bagging paper, the colloidal particles of emulsion after thermal treatment (looks like being) were adhered to the fibers. Thus, using biodegradable polymer emulsion is expected to protect a fruit for a long time.

Properties of Biodegradable Polymer and Afforestation Seedling Mulching Mat (생분해성 고분자와 멀칭매트의 물성)

  • Kim, Kang-Jae;Kim, Hyoung-Jin;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • Characteristics of mixing biodegradable polymers and polymer impregnated paper for mulching mat for seedling were investigated. The mixed film of 70% PLA was most easily biodegradable. The surface of polymer films were changed to more rough due to enzymatic degradation of lipase. Tensile strength and breaking elongation of PLA mixed films were increased to the 0.04-0.31 kN/m and the 0.17-0.96%, respectively. With higher PLA contents, intensities of ester originated carboxyl group(about $1,748cm^{-1}$) were increased. Physical properties of prepared mulching mats were increased with PLA contents and stiffness of mulching mat was not so much changed.

Development of CMP Pad by Using Biodegradable Polymer (생분해 폴리머를 이용한 CMP 연마 패드의 개발)

  • Chang, One-Moon;Park, Ki-Hyun;Ahn, Dae-Young;Kim, Sun-Dae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.374-375
    • /
    • 2006
  • The purpose of this paper is to investigate the propriety of biodegradable polymer pad in spite of exchanging from existing polyurethane pad used in CMP(Chemical Mechanical Planarization). Poli 400 of G&P Technology for CMP and Ellipsometer of Rudolph AutoEL-III for measurement were used in this experiment. From this experiment, it is proven that the biodegradable polymer pad is sufficiently suitable in CMP process. Therefore, it is expected that, by using the biodegrable pad CMP manufacturing process, and will be decreased. Especially, wafer scratch can be decreased.

  • PDF

Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents (생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향)

  • Kim, Hyun Wook;Lee, Woo-Yiel;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.

Biodegradable Polymer-Nanoceramic Composite for Bone Regeneration

  • Kim, Sang-Soo;Park, Min-Sun;Kim, Byung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.179-179
    • /
    • 2006
  • PLGA/HA composite scaffold fabricated by GF/PL method showed enhanced mechanical property, hydrophilicity and osteoconductivity compared with the SC/PL scaffolds, and this enhancement was most likely due to a higher extent of exposure of HA particles to the scaffold surface. The biodegradable polymer/bioceramic composite scaffolds fabricated by the GF/PL method could enhance bone regeneration efficacy for the treatment of bone defects compared with conventional composite scaffolds.

  • PDF