• Title/Summary/Keyword: Gene delivery

Search Result 190, Processing Time 0.127 seconds

Chitosan and Its Derivatives for Gene Delivery

  • Lee, Knen-Yong
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.195-201
    • /
    • 2007
  • Non-viral vectors, including lipid- or polymer-based systems, have attracted much attention to date as a gene delivery vehicle, due to safety issues with viral vectors. Chitosan, a naturally existing cationic polymer, has shown great potential as a gene delivery carrier, as it has low immunogenicity and toxicity, excellent transcellular transport ability, and is relatively easy to chemically modify. This review summarizes and discusses the general features of chitosan and its applications as a delivery carrier of DNA and RNA.

Liposome-Mediated Electric Gene Delivery into Fetal and Adult Gonads (Liposome을 매개로 한 태아 및 웅성 생식선으로의 전기적 유전자 도입)

  • Choi, S. C.;S. K. Choi;S. S. Choi;S. U. Kim;N. N. Cho;J. Y. Jung;C. S. Park;S. H. Lee;S. H. Lee
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • Gene delivery is one of the keen interests in animal industry as well as research on gene functions. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. To improve the efficiency of gene delivery, a new procedure was tested. We injected exogenous DNA containing LacZ into the female or male gonads and then pulsed electric field. Electroporated gonads showed positive X-gal staining in many seminiferous tubules of the porcine fetal gonads. Exogenously introduced LacZ genes were also expressed in female porcine gonad. In addition, we demonstrated efficient gene delivery in gonad of adult mouse. Furthermore, we succeed to generate genetically modified germline cells showing GFP and positive X-gal signals. The results suggest that the newly developed gene delivery is an effective way of in vivo transfection in mammals. The developed gene delivery procedure should be useful in producing transgenic animals when combined with primary cell culture and nuclear transplantation.

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Biodistribution and Hemolysis Study of Terplex Gene Delivery System in Mice

  • Oh, Eun-Jung;Shim, Jin-young;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • Polymeric gene delivery system attracts profound attention as it shows less toxicity, versatility, and reasonable gene expression efficiency. Terplex system, a synthetic biopolymeric gene delivery system consisting of stearyl poly-L-lysine (stearyl-PLL) and low density lipoprotein (LDL) was evaluated for its body distribution of gene expression of exogenously administered pDNA after tail-vein injection in mice. Kidney and spleen are two major organs with highest gene expression, whereas liver and heart showed marginal gene expression among the organs examined. Hemolytic effect of the terplex system was evaluated using human red blood cells, where terplex system did not cause significant hemolysis at the concentrations above the experimental ranges, although unmodified PLL or stearyl-PLL without LDL did. Serum stability of terplex system against enzymatic degradation was also significantly enhanced, presumably due to the steric stabilization from the polymers. Based on these findings and along with its high in vitro transfection efficiency, terplex system could serve as a safe and efficient polymeric gene delivery system with many applications for the in vivo gene therapy.

Adenovirus vs AAV Vectors for Gene Delivery: Their Advantages and Disadvantages

  • Im Dong-Soo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.109-115
    • /
    • 2002
  • Gene therapy is to treat and cure diseases by an introduction of therapeutic genes in defective cells or tissues of human body. Gene delivery system, gene expression system, and therapeutic gene are three core elements for gene therapy. The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for therapeutic outcome of gene delivery. Because it can be used in common for the treatment and cure of various diseases, gene delivery system is the most important core element for a successful gene therapy. Viruses are naturally evolved to transfer their genomes into host cells efficiently. This ability has made vectorologists exploit viruses as attractive vehicles for the delivery of therapeutic genes. Viral vectors based on adenovirus (Ad) and adeno-associated virus (AAV) have been often used for gene delivery in laboratory. Ad and AAV vectors derived from human DNA viruses differ greatly in their life cycle, expression level and duration of transgenes, immunogenicity, and vector preparation. Both vectors can be used as effective tools for gene therapy and more recently in functional genomics. Here, the characteristics of Ad and AAV vectors are discussed.

  • PDF

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes

  • Tu, Ying;Kim, Ji-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.821-827
    • /
    • 2010
  • Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.

Gene Medicine : A New Field of Molecular Medicine

  • Kim, Chong-Kook;Haider, Kh-H;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2001
  • Gene therapy has emerged as a new concept of therapeutic strategies to treat diseases which do not respond to the conventional therapies. The principle of gene therapy is to Introduce genetic materials into patient cells to produce therapeutic proteins in these cells. Gene therapy is now at the stage where a number of clinical trials have been carried out to patients with gene-deficiency disease or cancer. Genetic materials for gene therapy are generally composed of gene expression system and gene delivery system. For the clinical application of gene therapy in a way which conventional drugs are used, researches have been focused on the design of gene delivery system which can offer high transfection efficiency with minimal toxicity. Currently, viral delivery systems generally provide higher transfection efficiency compared with non-viral delivery systems while non-viral delivery systems are less toxic, less immunogenic and manufacturable in large scale compared with viral systems. Recently, novel strategies towards the design of new non-viral delivery system, combination of viral and non-viral delivery systems and targeted delivery system have been extensively studied. The continued effort in this area will lead us to develop gene medicine as "gene as a drug" in the near future.

  • PDF

Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide (양이온 펩타이드가 컨쥬게이트된 수용성 키토산의 유전자 전달체로서의 특성)

  • Kim, Young-Min;Kim, Ji-Ho;Park, Seong-Cheol;Park, Yung-Hoon;Jang, Mi-Kyeong
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.300-311
    • /
    • 2016
  • Recently gene delivery has been designed newly using bioactive biomaterial and applied in the various field by many researchers. In this study, we proposed a new gene delivery system which has the capability of targeting effect in the specific tissue and remarkably enhanced transfection efficiency. We investigated $^1H-NMR$ spectroscopy, particle size analyzer and gel retardation to confirm the correct preparation of gene delivery. Also, we identified the hemo-compatibility of gene delivery by hemolysis assay, non-cytotoxicity by MTT test and transfection efficiency. The uptake mechanism of the gene carrier was confirmed using inhibitor agent such as sodium azide, indomethacin, quercetin, colchicine, and chloropromazine. As a results, it was identified that gene carrier prepared by in this study entered in the cell by the microtubule-dependent, energy-dependent and clathrin-mediated endocytosis pathway.

Receptor-mediated gene delivery to hepatocyte with galatosylated polyethylenimine

  • Kim, In-Sook;Oh, In-Joon;Kim, Sung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.292.2-293
    • /
    • 2003
  • In the gene therapy. viral gene delivery systems are limited in use because of several drawbacks like host immune reactions. Hence, non-viral gene delivery systems such as cationic polymers or synthetic gene carriers are being widely investigated to overcome the problems in the use of viral vectors. We synthesized a new conjugate of polyethyleniminet carrying galactose moieties as a targeting ligand for asialoglycoprotein (ASGP) receptors of hepatocytes. (omitted)

  • PDF