홍성 신리 지역 대리암 내 함석류석 변성염기성암의 암석지화학 연구 및 그 지구조적 의미

Petrochemistry of Garnet-bearing Metabasite in Marble at Shinri area in Hongseong and its Tectonic Implication

  • 김성원 (한국지질자원연구원 국토지질연구본부 지질조사연구실) ;
  • 고희재 (한국지질자원연구원 국토지질연구본부 지질조사연구실)
  • Kim, Sung-Won (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Hee-Jae (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2010.07.05
  • 심사 : 2010.08.09
  • 발행 : 2010.09.30

초록

남서부 경기육괴 홍성의 동부 예당호 부근의 신리지역은 원생대 후기의 덕정리 화강섬록암-토날라이트, 압쇄 각섬석 정편마암 및 함석류석 변성염기성암을 포함하는 대리암이 분포한다. 이 논문에서는 신리지역의 대리암 내 원생대 후기 함석류석 변성염기성암의 광물화학 및 지화학 자료를 보고하고자 한다. 신리지역의 함석류석 변성염기성암을 $SiO_2$$Na_2O+K_2O$의 분별도에 도시하면 $SiO_2$의 함량은 46.98-51.17 wt% 그리고 $Na_2O+K_2O$의 함량은 1.95-2.85 wt%로 솔레아이트질 서브-알칼라인 현무암의 영역에 점시된다. Zr/Y 대 Zr의 분별도에서도 함석류석 변성염기성암은 서브-알칼라인 현무암의 영역에 점시된다. 신리 지역의 변성염기성암의 희토류 원소 농도를 콘드라이트 조성치에 표준화한 희토류 양상은 중앙해령과 유사한 현무암의 희토류원소 양상을 보여준다. 평균 초생맨틀값으로 미량원소 성분을 표준화하여 도시한 거미 성분도상에서는 신리변성염기성암는 경희토류가 부화되어 있고, 전반적으로 주원소 및 미량원소의 지화학적 특징은 판 내부 환경의 현무암과 유사한 경향을 보여준다. 이들 양상은 기 보고된 비봉과 백동지역의 변성초염기성암과 관련된 고압형 변성염기성암의 중앙해령 현무암과 유사한 호상열도 현무암 혹은 배호분지 현무암의 양상과 상이하다. 신리지역 대리암 내에 포함된 변성염기성암의 광물군과 광물화학을 근거로 계산된 변성 압력-온도 조건은 석류석 중심부에서 9.6-12.7 kb, $695-840^{\circ}C$, 석류석 가장자리에서 9.6-13.6 kb, $630-755^{\circ}C$로 온도가 감소하며 압력이 거의 일정한 변성진화과정을 보여준다. 이들 변성 압력-온도 진화경로는 비봉 및 백동 변성염기성암의 등온하강 후퇴변성작용 경로와는 다름을 알 수 있다. 이들 암체에서 보고된 트라이아스기 변형, 변성 시기와 더불어 원생대 후기의 변성작용과 생성 시기 등을 포함한 보다 상세한 연구가 수행되어져야 할 것이다.

The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.

키워드

참고문헌

  1. 송석환, 송윤섭, 2001, 충남 서부 신곡 지역에 분포하는 초염기성암의 광물 조성 및 지구화학. 자원환경지질, 34, 395-415.
  2. 송석환, 최선규, 오창환, 서지은, 최성호, 2004, 충남 홍성 및 광천지역 초염기성암의 암석 및 지구화학. 자원환경지질, 37, 477-497.
  3. 이종혁, 김성수, 1963, 1: 50,000 홍성 도폭 지질조사보고서. 한국지질자원연구원, 33p.
  4. 엄상호, 이민성, 1963, 1: 50,000 대흥 도폭 지질조사보고서. 한국지질자원연구원, 18p.
  5. 기원서 외, 2009, 한반도/동북아 중생대 지각진화연구, GP2009-012-01-2009, 한국지질자원연구원.
  6. Choi, S.G., Song, S.H. and Choi, S., 1998, Genetic implications of the ultrmafic rocks from the Hongseong area, western part of Chungnam. Abstract of Kore. Soc., Eon. Environ. Geol., p46.
  7. Graham, C.M. and Powell, R., 1984. A garnet-hornblende geothermometer: calibration, testing and application to the Pelona Schist, southern California. J. Metamorph. Geol., 2, 13-21. https://doi.org/10.1111/j.1525-1314.1984.tb00282.x
  8. Green, D.H. and Ringwood, A.E., 1967, An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta, 31, 767-833. https://doi.org/10.1016/S0016-7037(67)80031-0
  9. Irvine, T.N. and Baragar, W.R., 1971, CA guide to the chemical classification of the common igneous rocks. Canad. J. Earth Sci., 8, 523-548. https://doi.org/10.1139/e71-055
  10. Kretz, R., 1983, Symbols for rock-forming minerals. Am. Mineral., 68, 277-279
  11. Kim, S.W., Oh, C.W., Williams, I.S., Rubbato, D., Ryu, I.- C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  12. Kim, S.W., Santosh, M. and Kwon, S., under review, A Neoproterozoic ophiolite suite from the Hongseong suture, South Korea: Geochemistry, zircon SHRIMP geochronology and implications on the tectonics of East Asia. Gondwana Res.
  13. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precam. Res., 162, 475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  14. Kohn, M.J. and Spear, F.S., 1990, Two new geobarometers for garnet amphibolites, with applications to southern Vermont. Am. Mineral., 75, 89-96.
  15. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.-C., 2009, Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth Planet. Sci. Lett., 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  16. Laird, J. and Albee, A.L., 1981, Pressure-temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. Am. J. Sci., 281, 127-175. https://doi.org/10.2475/ajs.281.2.127
  17. Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B., 1989, A classification of igneous rocks and glossary of terms. Blackwell, Oxford.
  18. Liou, J.J.. Zhang, R.Y., Earnst, W.G., Rumble, D.III. and Maruyama, S., 1998, High pressure minerals from deeply subducted metamorphic rocks. Rev. Mineral., 37, 33-96.
  19. Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., 56, 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
  20. Oh, C.W., Choi, S.-G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P., 2009, Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Res., 16, 272-284.. https://doi.org/10.1016/j.gr.2009.04.001
  21. Oh, C.W., Choi, S.-G., Song, S.H. and Kim, S.W., 2004, Metamorphic evolution of the Baekdong metabasite in the Hongseong area, South Korea and its relationship with the Sulu collision belt of China. Gondwana Res., 7, 809- 816 https://doi.org/10.1016/S1342-937X(05)71065-0
  22. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. J. Geol., 113, 226- 232. https://doi.org/10.1086/427671
  23. Pearce, J.A. and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 12, 290-330.
  24. Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69, 33-47.
  25. Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., Lavran'eva, I.V., Gerasimov, V.Y., Fed'Kin, V.V., Kitsul, V.I., Karasakov, L.P. and Berdnikov, N.V., 1985, Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J. Metamorph. Geol., 3, 265-310. https://doi.org/10.1111/j.1525-1314.1985.tb00321.x
  26. Seo, J., Choi, S.-G., Oh, C.W., Kim, S.W. and Song, S.H., 2005, Genetic implications of two different ultramafic rocks from Hongseong area in the southwestern Gyeonggi Block, South Korea. Gondwana Res., 8, 539-552. https://doi.org/10.1016/S1342-937X(05)71154-0
  27. Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59, 101-118. https://doi.org/10.1016/0012-821X(82)90120-0
  28. Song, S.H. Choi, S.G. and Woo, J.G., 1997, Genetic implications of ultramafic rocks from the Bibong area in the Kyeonggi gneiss complex. Econ. Environ. Geol., 30, 477- 491.
  29. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Pub., 313-345.
  30. Williams, I.S., Cho, D.-L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  31. Winchester, J.A. and Floyd, P.A., 1976, Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett., 28, 459-469. https://doi.org/10.1016/0012-821X(76)90207-7
  32. Zhai, M. and Guo, J., 2005, Discovery of eclogites and extension of Sulu UHP belt in South Korea. Mitt. Osterr. Miner. Ges., 150, 172.