DOI QR코드

DOI QR Code

Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves

공진장치를 이용한 단주기파랑과 고립파의 제어

  • 이광호 ((일)나고야대학 대학원 공학연구과 사회기반공학전공) ;
  • 정성호 (한국해양대학교 대학원 토목환경공학과) ;
  • 정진우 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설환경공학부)
  • Received : 2009.08.21
  • Accepted : 2009.10.23
  • Published : 2010.02.28

Abstract

The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.

본 연구에서는 고파랑의 단주기파랑과 고립파를 동시에 저감시키기 위한 저감공으로 단주기파랑에 대해 기연구개발된 공진장치를 기설의 방파제 항구부에 부착하는 공법을 검토하였다. 이와 같은 저감공은 공진현상으로부터 단주기파랑의 입사에너지를 포획하여 기설의 방파제 배후로 전달되는 파랑에너지를 저감시키는 특성을 갖는다. 수치해석에 있어서 단주기파랑에 대해서는 연직선Green함수에 기초한 특이점분포법을, 고립파에 대해서는 3차원수치파동수로를 이용하는 3차원혼상류해석법을 각각 적용하였고, 기존의 수치해석결과 및 실험결과와 비교 분석하여 본 수치해석법의 타당성을 검증하였다. 이로부터 공진장치가 없는 경우와 대비 검토하여 단주기파랑 및 고립파의 제어에 대한 공진장치의 제어능을 다각도로 검토한 결과, 그의 유효성을 충분히 확인할 수 있었다. 그리고, 제어대상의 고립파에 대해 공진장치의 최적치수가 존재한다는 사실을 확인할 수 있었다.

Keywords

References

  1. 국립방재연구소(1998) 동해안에서의 쯔나미 위험도 평가. 국립방재연구소, 연구보고서, NIDP-98-06.
  2. 김도삼, 김지민, 이광호(2007a) 동해연안에 영향을 미친 지진해일의 수치시뮬레이션, 한국해양공학회지, 한국해양공학회, 제21권, 제6호, pp. 72-80.
  3. 김도삼, 김지민, 이광호, 손병규(2007b) 일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석, 한국해양공학회지, 한국해양공학회, 제21권, 제6호, pp. 64-71.
  4. 김도삼, 이광호, 허동수, 김정수(2001) VOF법에 기초한 불투과 잠제 주변파동장의 수치해석, 대한토목학회 논문집, 대한토목학회, 제21권, 제5-B호, pp. 551-560.
  5. 이광호, 이상기, 신동훈, 김도삼(2008) 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석, 한국해안.해양공학회논문집, 한국해안.해양공학회, 제20권, 제1호, pp. 1-13.
  6. 정성호, 하선욱, 정진우, 김도삼(2009) 2열잠제에 의한 지진해일파(고립파)의 제어, 한국해양과학기술협의회 공동학술대회 발표논문집, pp. 2267-2270.
  7. Amsden, A.A. and Harlow, F.H. (1970) The SMAC method: a numerical technique for calculating incompressible fluid flow, Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
  8. Brorsen, M. and Larsen, J. (1987) Source generation of nonlinear gravity waves with boundary integral equation method, Coastal Engineering, Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  9. Cho, Y.-S. and Lee, H.-J. (2002) Numerical simulations of 1983 central East Sea tsunami at Imwon: 1. Propagation across the east sea, J. of Korea Water Resources Association, Vol. 34, No. 4, pp. 427-436.
  10. Dean, R.G. and Dalrymple, R.A. (1991) Water wave mechanics for engineers and scientists, World Scientisfic.
  11. Fenton. J. (1972) A ninth-order solution for the solitaty wave: Part 2, J. of Fluid Mech., Vol. 53, pp. 257-271. https://doi.org/10.1017/S002211207200014X
  12. Grimshaw, R. (1971) The solitary wave in water of variable depth: Part 2, J. of Fluid Mech., Vol. 46, pp. 611-622. https://doi.org/10.1017/S0022112071000739
  13. Goring, D.G. (1978) The propagation of long waves onto a shelf, Laboratory of Hydraulics and Water Resources, California Institute of Technology.
  14. Hinatsu, M. (1992) Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface, J. of Kansai Soc. Nav. Archit. Japan, No. 217, pp. 1-11.
  15. Hirt, C.W and Nichols, B.D. (1981) Volume of fluid(VOF) method for the dynamics of free boundaries, J. of Comput. Phys., Vol. 287, pp. 299-316.
  16. Issacson, M.Q. (1978) Vertical cylinders of arbitrary section in wave, J. of Waterway, Coastal and Ocean Eng. Division, ASCE, Vol. 104, No. WW4, pp. 309-322.
  17. Lesieur, M., Metais, O., and Comte, P. (2005) Large-eddy simulations of turbulence, Cambridge Univ. Press, New York, N.Y.
  18. Li, Y. (2000) Tsunami : Non-breaking and breaking solitary wave run-up, Report No. KH-R-60, Laboratory of Hydraulics and Water Resources, California Institute of Technology.
  19. LI, Y. and Raichlen, F. (2003) Energy balance model for breaking solitary wave runup, J. of Waterway, Port, Coastal and Ocean Eng., Vol. 129, No. 2, pp. 47-59. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(47)
  20. MacCamy, R. and Fuches, R.A. (1954) Wave forces on piles : A diffraction theory, Technical Memorandum No. 69, U. S. Army Corps of Engineers, Beach erosion board, Washinton, D. C.
  21. Nakamura, T., Mochizuki, H., and Morita S. (1996) Performance of a resonator designed by the wave filter theory-applicability to a habour, Proceedings of the 25th ICCE, ASCE, pp. 1280-1292.
  22. Nakamura, T., Morita S., and Kato, K. (1998) Wave protection performance of a resonator founded at harbor entrance, Proceedings of Coastal Engineering, JSCE, Vol. 45, pp. 721-725. https://doi.org/10.2208/proce1989.45.721
  23. Nakamura, T. and Oku, Y. (1985) Wave scattering around a vertical breakwater of arbitary plane geometry, Proceedings of the 32nd Japanese Conference on Coastal Engineering, JSCE, Vol. 32, pp. 594-598. https://doi.org/10.2208/proce1970.32.594
  24. Ohyama, T. and Nadaoka, K. (1991) Development of a numerical wave tank for analysis of non-linear and irregular wave field, Fluid Dyna. Res., Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  25. Perroud, P.H. (1957) The solitary wave reflection along a straight vertical wall at oblique incidence, Technical Report Series 99, Issue 3, Institute of Engineering Research, University of California, Berkeley, CA.
  26. Poon, Y.K., Raichlen, F., and Walker, J. (1998) Application of physical model in long wave studies for the port of Long Beach, Proceedings of the 26th ICCE, ASCE, pp. 1222-1235.
  27. Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q., and Kennedy, A. (2001) A fully nonlinear Boussinesq model in generalized curvilinear coordinates, Coastal Engineering, Vol. 42, pp. 337- 358. https://doi.org/10.1016/S0378-3839(00)00067-3
  28. Silva, R., Losada, I.J., and Losada, M.A. (2000) Reflection and transmission of tsunami waves by coastal structures, Applied Ocean Research, Vol. 22, pp. 215-223. https://doi.org/10.1016/S0141-1187(00)00012-2
  29. Sohn, D.-H., Ha, T.-M., and Cho, Y.-S. (2009) Distant tsunami simulation with corrected dispersion effects, Coastal Engrg. J., Vol. 51, No. 2, pp. 123-141. https://doi.org/10.1142/S0578563409001977
  30. Smagorinsky, J. (1963) General circulation experiments with the primitive equations, Mon, Weath. Rev., Vol. 91, No. 3, pp. 99- 164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  31. Synolakis, C.E. (1986) The run-up of long waves, Ph.D. Thesis, California Institute of Technology.
  32. Synolakis, C.E. (1987) The run-up of solitary waves, J. of Fluid Mechanics, Vol. 185, pp. 523-545. https://doi.org/10.1017/S002211208700329X
  33. Tonkin, S., Yeh, H., Kato, F., and Sato, S. (2003) Tsunami scour around a cylinder, J. of Fluid Mechanics, Vol. 496, pp. 165- 192. https://doi.org/10.1017/S0022112003006402
  34. Zelt, J.A. (1991a) The run-up of non-breaking and breaking solitary waves, Coastal Engineering, Vol. 15, No. 3, pp. 205-246. https://doi.org/10.1016/0378-3839(91)90003-Y
  35. Zelt, J.A. (1991b) Overland flow from solitary waves, J. of Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 117, pp. 247- 263. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:3(247)