• Title/Summary/Keyword: TWOPM-3D

Search Result 8, Processing Time 0.025 seconds

A Study on the Control of Solitary Waves by Resonator (공진장치에 의한 고립파의 제어에 관한 연구)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • In this study, 3-dimensional hydraulic model experiment and 3-dimensional numerical analysis were carried out to review the control performance on the solitary waves by attaching the resonator suggested in this study to the openings of the existing rectangular harbors and breakwaters placed in a straight line. In the numerical analysis, TWOPM-3D of 3-D one-field Model for immiscible TWO-Phase flows method using 3-dimensional numerical wave tank was applied, and the validity of the numerical analysis method was verified through comparative analysis between hydraulic experimental results and numerical analysis results. In addition, the effectiveness of the resonator was identified as a result of review on the control performance to control solitary waves of the resonance devices through comparison with cases where the resonators are attached or not.

Evaluating Method of Solitary Wave-Induced Tsunami Force Acting on an Onshore Bridge in Coastal Area (연안역의 육상 교량에 작용하는 고립파에 의한 지진해일파력의 평가법)

  • Kim, Do-Sam;Kyung, Kab-Soo;Lee, Yoon-Doo;Woo, Kyung Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • In this study, the solitary wave-induced tsunami force acting on an onshore bridges in coastal area was numerically modelled by means of TWOPM-3D based on Navier-Stokes solver and VOF method which can track free surface effectively. The validity of numerical analysis was verified by comparing the experimental tsunami bore force acting on vertical wall and column structure. In particular, the characteristics of tsunami force with the changing tsunami intensity were surveyed through numerical experiments. The availability of 3-dimensional numerical analysis was reviewed through the comparison between the existing numerical results and design criteria for each drag force coefficient by applying Morison equation considering only drag force. As reasonable and high-precision estimation method of tsunami force, it was suggested to apply the estimation method taking drag and inertial force into consideration at the same time.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Numerical Simulation for Tsunami Force Acting on Onshore Bridge (for Solitary Wave) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(고립파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.92-108
    • /
    • 2017
  • Present work shows a numerical method to analysis of interaction analysis between solitary wave and onshore bridge. Numerical simulation is carried out by TWOPM-3D (three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. To do this, the solitary wave is generated numerically in numerical wave channel, and numerical results and experimental results were compared and analyzed in order to verify the applicability of force acting on an onshore bridge. From this, we discussed precisely the characteristics of horizontal and vertical forces (uplift and downward forces) changes including water level and velocity changes due to the variation of solitary wave height, water depth, onshore bridge's location and type, and number of girder. Furthermore, It is revealed that the maximum horizontal and vertical forces acting on the girder bridge show different varying properties according to the number of girder, although each maximum force acting on the girder bridge is proportional to the increasement of incident solitary wave height, and the entrained air in the fluid flow affects the vertical force highly.

Evaluation of Stability of Quay Wall Considering Overtopping of Tsunami (지진해일파의 월파를 고려한 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.31-45
    • /
    • 2012
  • This study was conducted to estimate the stability of a quay wall in case of wave overtopping under the combined action of an earthquake and tsunami using limit equilibrium method. The tsunami force was calculated by using a numerical program called TWOPM-3D (3-D one-field Model for immiscible TWO-Phase flows). Especially, the wave force acting behind the quay wall after a tsunami wave overtopping was estimated by treating back fill as a permeable material. The stability of the quay wall was assessed for both the sliding and overturning modes under passive and active conditions. The variation in the stability of the quay wall with time was determined by parametric studies, including those for the tsunami wave height, seismic acceleration coefficient, internal friction angle of the soil, wall friction angle, and pore water pressure ratio. When the earthquake and tsunami were considered simultaneously, the tsunami induced wave overtopping increased the stability of the quay wall under the passive condition, but in the active condition, the safety factors decreased.

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.

Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves (공진장치를 이용한 단주기파랑과 고립파의 제어)

  • Lee, Kwang Ho;Jeong, Seong Ho;Jeong, Jin Woo;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.89-100
    • /
    • 2010
  • The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami (지진 및 지진해일파 작용하의 해안안벽의 안정성평가)

  • Lee, Kwang-Ho;Ha, Sun-Wook;Lee, Kui-Seop;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.41-54
    • /
    • 2011
  • The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.