DOI QR코드

DOI QR Code

Cadaverine is Transported into Vibrio vulnificus Through its CadB in Alkaline Environment

  • Kang, In-Hye (Department of Life Science and Basic Science Institute for Cell Damage Control, Sogang University) ;
  • Kim, Eui-Jin (Department of Life Science and Basic Science Institute for Cell Damage Control, Sogang University) ;
  • Lee, Jeong-K. (Department of Life Science and Basic Science Institute for Cell Damage Control, Sogang University)
  • Published : 2009.10.31

Abstract

The exogenously added cadaverine is effective in protecting Vibrio vulnificus from methyl viologen (MV)-induced superoxide stress at pH 8.5. Such a protective effect by cadaverine was not observed at pH 7.5. Consistently, the accumulated level of intracellular cadaverine at pH 8.5 is approximately four times as much as that of the control cell at pH 7.5. Cadaverine accumulation is not affected by MV. The protection of V. vulnificus by cadaverine from superoxide stress was abolished when cadB coding for the lysine-cadaverine antiporter was interrupted. However, the cadaverine-mediated protection was complemented with cadB DNA. Therefore, CadB of V. vulnificus not only acts as a lysine-cadaverine antiporter at acid pH to neutralize the external medium, but also mediates cadaverine uptake at alkaline pH to result in cell protection from superoxide stress.

Keywords

References

  1. Chattopadhyay, M. K., C. W. Tabor, and H. Tabor. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. U.S.A. 100: 2261-2265 https://doi.org/10.1073/pnas.2627990100
  2. Ha, H. C., D. J. P. Yager, P. A. Woster, and R. A. Casero Jr. 1998. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem. Biophys. Res. Commun. 244: 298-303 https://doi.org/10.1006/bbrc.1998.8258
  3. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  4. Kang, I.-H., J.-S. Kim, E.-J. Kim, and J. K. Lee. 2007. Cadaverine protects Vibrio vulnificus from superoxide stress. J. Microbiol. Biotechnol. 17: 176-179
  5. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmid for DNA cloning in Gramnegative bacteria. Gene 70: 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  6. Kim, J.-S., M.-H. Sung, D.-H. Kho, and J. K. Lee. 2005. Induction of manganese-containing superoxide dismutase in acidic environment is required for the acid tolerance of Vibrio vulnificus. J. Bacteriol. 187: 5984-5995 https://doi.org/10.1128/JB.187.17.5984-5995.2005
  7. Kim, J.-S., S. H. Choi, and J. K. Lee. 2006. Lysine decarboxylase expression of Vibrio vulnificus is induced by SoxR in response to superoxide stress. J. Bacteriol. 188: 8586-8592 https://doi.org/10.1128/JB.01084-06
  8. Lee, H.-J., K.-J. Park, A. Y. Lee, S. G. Park, B. C. Park, K.-H. Lee, and S.-J. Park. 2003. Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. J. Bacteriol. 185: 5891-5896 https://doi.org/10.1128/JB.185.19.5891-5896.2003
  9. Lemonnier, M. and L. David. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144: 751-760 https://doi.org/10.1099/00221287-144-3-751
  10. Markwell, M. A., S. M. Haas, L. L. Bieber, and N. E. Tolbert. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210 https://doi.org/10.1016/0003-2697(78)90586-9
  11. Merrell, D. S. and A. Camilli. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34: 836-849 https://doi.org/10.1046/j.1365-2958.1999.01650.x
  12. Merrell, D. S. and A. Camilli. 2000. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the "ToxR-like" family of transcriptional regulators. J. Bacteriol. 182: 5342-5350 https://doi.org/10.1128/JB.182.19.5342-5350.2000
  13. Milton, D. L., R. O'Toole, P. Horstedt, and H. Wolf-Watz. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178: 1310-1319
  14. Minton, K. W., H. Tabor, and C. W. Tabor. 1990. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. U.S.A. 87:2851-2855 https://doi.org/10.1073/pnas.87.7.2851
  15. Neely, M. N. and E. R. Olson. 1996. Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J. Bacteriol. 178: 5522-5228
  16. Rhee, J. E., H.-M. Ju, U. Park, B. C. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098
  17. Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251 https://doi.org/10.1111/j.1574-6968.2002.tb11089.x
  18. Rhee, J. E., K. S. Kim, and S. H. Choi. 2005. CadC activates pH-dependent expression of the Vibrio vulnificus cadBA operon at a distance through direct binding to an upstream region. J. Bacteriol. 187: 7870-7875 https://doi.org/10.1128/JB.187.22.7870-7875.2005
  19. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  20. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 37-45
  21. Soksawatmaekhin, W., A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51: 1401-1412 https://doi.org/10.1046/j.1365-2958.2003.03913.x
  22. Soksawatmaekhin, W., T. Uemura, N. Fukiwake, K. Kashiwagi, and K. Igarashi. 2006. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem. 281: 29213-29220 https://doi.org/10.1074/jbc.M600754200
  23. Tkachenko, A., L. Nesterova, and M. Pshenichnov. 2001. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176: 155-157 https://doi.org/10.1007/s002030100301