DOI QR코드

DOI QR Code

Acetate Consumption Activity Directly Determines the Level of Acetate Accumulation During Escherichia coli W3110 Growth

  • Shin, Soo-An (CJ Cheiljedang R&D Center for Bioproducts) ;
  • Chang, Dong-Eun (Metabolix) ;
  • Pan, Jae-Gu (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2009.10.31

Abstract

Escherichia coli excretes acetate during aerobic growth on glycolytic carbon sources, which has been explained as an overflow metabolism when the carbon flux into the cell exceeds the capacity of central metabolic pathways. Nonacetogenic growth of E. coli on gluconeogenic carbon sources like succinate or in carbon-limited slow growth conditions is believed an evidence for the explanation. However, we found that a strain defected in the acs (acetyl Co-A synthetase) gene, the product of which is involved in scavenging acetate, accumulated acetate even in succinate medium and in carbon-limited low growth rate condition, where as its isogenic parental strain did not. The acs promoter was inducible in noncatabolite repression condition, whereas the expression of the ackA-pta operon encoding acetate kinase and phosphotransacetylase for acetate synthesis was constitutive. Results in this study suggest that E. coli excretes and scavenges acetate simultaneously in the carbon-limited low growth condition and in nonacetogenic carbon source, and the activity of the acetate consumption pathway directly affects the accumulation level of acetate in the culture broth.

Keywords

References

  1. Andersen, K. B. and K. von Meyenburg. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144: 114-123
  2. Balbás, P., M. Alexeyev, I. Shokolenko, F. Bolivar, and F. Valle. 1996. A pBRINT family of plasmids for integration of cloned DNA into the Escherichia coli chromosome. Gene 172: 65-69 https://doi.org/10.1016/0378-1119(96)00028-5
  3. Brown, T. D., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetylcoenzyme A in Escherichia coli. J. Gen. Microbiol. 102: 327-336 https://doi.org/10.1099/00221287-102-2-327
  4. Chang, Y. Y., A. Y. Wang, and J. E. Cronan Jr. 1994. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol. Microbiol. 11: 1019-1028 https://doi.org/10.1111/j.1365-2958.1994.tb00380.x
  5. Diaz-Ricci, J. C., B. Hitzmann, U. Rinas, and J. E. Bailey. 1990. Comparative studies of glucose catabolism by Escherichia coli grown in a complex medium under aerobic and anaerobic conditions. Biotechnol. Prog. 6: 326-332 https://doi.org/10.1021/bp00005a003
  6. Eiteman, M. A. and E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536 https://doi.org/10.1016/j.tibtech.2006.09.001
  7. Farmer, W. R. and J. C. Liao. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210
  8. Fox, D. K., N. D. Meadow, and S. Roseman. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J. Biol. Chem. 261: 13498-13503
  9. Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19: 85-116 https://doi.org/10.1111/j.1574-6976.1996.tb00255.x
  10. Holms, W. H. 1986. The central metabolic pathways of Escherichia coli: Relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell Regul. 28: 69-105
  11. Kakuda, H., K. Hosono, K. Shiroishi, and S. Ichihara. 1994. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J. Biochem. (Tokyo) 116: 916-922
  12. Kayser, A., J. Weber, V. Hecht, and U. Rinas. 2005. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151: 693-706 https://doi.org/10.1099/mic.0.27481-0
  13. Kessler, D. and J. Knappe. 1996. Anaerobic dissimilation of pyruvate, pp. 199-205. In F. C. Neidhardt, R. Curtiss. III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, et al. (eds.). Escherichia coli and Salmonella: Celluar and Molecular Biology, Vol. 1. American Society for Microbioligy, Washington, DC
  14. Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495-508 https://doi.org/10.1016/0092-8674(87)90503-4
  15. Kumari, S., C. M. Beatty, D. F. Browning, S. J. Busby, E. J. Simel, G. Hovel-Miner, and A. J. Wolfe. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179 https://doi.org/10.1128/JB.182.15.4173-4179.2000
  16. Kumari, S., E. J. Simel, and A. J. Wolfe. 2000. $\sigma^{70}$ is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 551-554 https://doi.org/10.1128/JB.182.2.551-554.2000
  17. Kumari, S., R. Tishel, M. Eisenbach, and A. J. Wolfe. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177: 2878-2886
  18. Lin, H., N. M. Castro, G. N. Bennett, and K. Y. San. 2006. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 71: 870-874 https://doi.org/10.1007/s00253-005-0230-4
  19. Maloy, S. R., M. Bohlander, and W. D. Nunn. 1980. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J. Bacteriol. 143: 720-725
  20. Maloy, S. R. and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173-180
  21. Maloy, S. R. and W. D. Nunn. 1981. Role of gene fadR in Escherichia coli acetate metabolism. J. Bacteriol. 148: 83-90
  22. McCleary, W. R., J. B. Stock, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175:2793-2798
  23. Miyake, M., C. Miyamoto, J. Schnackenberg, R. Kurane, and Y. Asada. 2000. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl. Biochem. Biotechnol. 84-86: 1039-1044 https://doi.org/10.1385/ABAB:84-86:1-9:1039
  24. Notley, L. and T. Ferenci. 1996. Induction of RpoS-dependent functions in glucose-limited continuous culture: What level of nutrient limitation induces the stationary phase of Escherichia coli? J. Bacteriol. 178: 1465-1468
  25. Nystr$\ddot{o}$m, T. 1994. The glucose-starvation stimulon of Escherichia coli: Induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12: 833-843 https://doi.org/10.1111/j.1365-2958.1994.tb01069.x
  26. Park, C. and G. L. Hazelbauer. 1986. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J. Bacteriol. 167: 101-109
  27. Pr$\ddot{u}$ß, B. M. 1998. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170: 141-146 https://doi.org/10.1007/s002030050626
  28. Pruss, B. M. and A. J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12: 973-984
  29. Rosenzweig, R. F., R. R. Sharp, D. S. Treves, and J. Adams. 1994. Microbial evolution in a simple unstructured environment:Genetic differentiation in Escherichia coli. Genetics 137: 903-917
  30. Shin, S. and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177: 4696-4702
  31. Shin, S., S. G. Song, D. S. Lee, J. G. Pan, and C. Park. 1997. Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol. Lett. 146: 103-108 https://doi.org/10.1111/j.1574-6968.1997.tb10178.x
  32. Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96 https://doi.org/10.1016/0378-1119(87)90095-3
  33. Spellerberg, B., D. R. Cundell, J. Sandros, B. J. Pearce, I. Id$\ddot{a}$np$\ddot{a}$$\ddot{a}$n-Heikkila, C. Rosenow, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19: 803-813 https://doi.org/10.1046/j.1365-2958.1996.425954.x
  34. Sunnarborg, A., D. Klumpp, T. Chung, and D. C. LaPorte. 1990. Regulation of the glyoxylate bypass operon: Cloning and characterization of iclR. J. Bacteriol. 172: 2642-2649
  35. Wolfe, A. J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69: 12-50 https://doi.org/10.1128/MMBR.69.1.12-50.2005
  36. Yamamoto, K. and A. Ishihama. 2003. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol. Microbiol. 47: 183-194 https://doi.org/10.1046/j.1365-2958.2003.03287.x
  37. Zhang, X. and H. Bremer. 1995. Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J. Biol. Chem. 270:11181-11189 https://doi.org/10.1074/jbc.270.19.11181

Cited by

  1. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase vol.4, pp.None, 2009, https://doi.org/10.1186/1752-0509-4-166
  2. Acetate accumulation through alternative metabolic pathways in ackA − pta − poxB − triple mutant in E. coli B (BL21) vol.32, pp.12, 2010, https://doi.org/10.1007/s10529-010-0369-7
  3. Characterization of E. coli MG1655 and frdA and sdhC mutants at various aerobiosis levels vol.154, pp.1, 2009, https://doi.org/10.1016/j.jbiotec.2011.03.015
  4. Adaptation of Glycolysis and Growth to Acetate in Sporolactobacillus sp. Y2-8 vol.168, pp.2, 2009, https://doi.org/10.1007/s12010-012-9789-2
  5. Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli vol.62, pp.4, 2012, https://doi.org/10.1007/s13213-012-0419-6
  6. Fermentation characterization of an L-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase vol.63, pp.4, 2009, https://doi.org/10.1007/s13213-012-0579-4
  7. Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations vol.13, pp.None, 2009, https://doi.org/10.1186/1471-2180-13-258
  8. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of l-tryptophan by Escherichia coli vol.29, pp.5, 2009, https://doi.org/10.1007/s11274-012-1243-7
  9. A genome-wide screen for identifying all regulators of a target gene vol.41, pp.17, 2009, https://doi.org/10.1093/nar/gkt655
  10. SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli vol.454, pp.3, 2009, https://doi.org/10.1042/bj20130412
  11. High-level production of L-threonine by recombinant Escherichia coli with combined feeding strategies vol.28, pp.3, 2009, https://doi.org/10.1080/13102818.2014.927682
  12. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli vol.98, pp.11, 2009, https://doi.org/10.1007/s00253-014-5613-y
  13. Optimization of carbon and nitrogen sources and substrate feeding strategy to increase the cell density ofStreptococcus suis vol.29, pp.4, 2009, https://doi.org/10.1080/13102818.2015.1039465
  14. Optimization of culture conditions to improve the expression level of beta1-epsilon toxin ofClostridium perfringenstype B inEscherichia coli vol.30, pp.2, 2016, https://doi.org/10.1080/13102818.2015.1126201
  15. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co‐utilization in Escherichia coli vol.114, pp.4, 2017, https://doi.org/10.1002/bit.26217
  16. Metabolic engineering for improving L-tryptophan production in Escherichia coli vol.46, pp.1, 2009, https://doi.org/10.1007/s10295-018-2106-5