References
- Andersen, K. B. and K. von Meyenburg. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144: 114-123
- Balbás, P., M. Alexeyev, I. Shokolenko, F. Bolivar, and F. Valle. 1996. A pBRINT family of plasmids for integration of cloned DNA into the Escherichia coli chromosome. Gene 172: 65-69 https://doi.org/10.1016/0378-1119(96)00028-5
- Brown, T. D., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetylcoenzyme A in Escherichia coli. J. Gen. Microbiol. 102: 327-336 https://doi.org/10.1099/00221287-102-2-327
- Chang, Y. Y., A. Y. Wang, and J. E. Cronan Jr. 1994. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol. Microbiol. 11: 1019-1028 https://doi.org/10.1111/j.1365-2958.1994.tb00380.x
- Diaz-Ricci, J. C., B. Hitzmann, U. Rinas, and J. E. Bailey. 1990. Comparative studies of glucose catabolism by Escherichia coli grown in a complex medium under aerobic and anaerobic conditions. Biotechnol. Prog. 6: 326-332 https://doi.org/10.1021/bp00005a003
- Eiteman, M. A. and E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24: 530-536 https://doi.org/10.1016/j.tibtech.2006.09.001
- Farmer, W. R. and J. C. Liao. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63: 3205-3210
- Fox, D. K., N. D. Meadow, and S. Roseman. 1986. Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system. J. Biol. Chem. 261: 13498-13503
- Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19: 85-116 https://doi.org/10.1111/j.1574-6976.1996.tb00255.x
- Holms, W. H. 1986. The central metabolic pathways of Escherichia coli: Relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell Regul. 28: 69-105
- Kakuda, H., K. Hosono, K. Shiroishi, and S. Ichihara. 1994. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J. Biochem. (Tokyo) 116: 916-922
- Kayser, A., J. Weber, V. Hecht, and U. Rinas. 2005. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151: 693-706 https://doi.org/10.1099/mic.0.27481-0
- Kessler, D. and J. Knappe. 1996. Anaerobic dissimilation of pyruvate, pp. 199-205. In F. C. Neidhardt, R. Curtiss. III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, et al. (eds.). Escherichia coli and Salmonella: Celluar and Molecular Biology, Vol. 1. American Society for Microbioligy, Washington, DC
- Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50: 495-508 https://doi.org/10.1016/0092-8674(87)90503-4
- Kumari, S., C. M. Beatty, D. F. Browning, S. J. Busby, E. J. Simel, G. Hovel-Miner, and A. J. Wolfe. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 4173-4179 https://doi.org/10.1128/JB.182.15.4173-4179.2000
-
Kumari, S., E. J. Simel, and A. J. Wolfe. 2000.
$\sigma^{70}$ is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182: 551-554 https://doi.org/10.1128/JB.182.2.551-554.2000 - Kumari, S., R. Tishel, M. Eisenbach, and A. J. Wolfe. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177: 2878-2886
- Lin, H., N. M. Castro, G. N. Bennett, and K. Y. San. 2006. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 71: 870-874 https://doi.org/10.1007/s00253-005-0230-4
- Maloy, S. R., M. Bohlander, and W. D. Nunn. 1980. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J. Bacteriol. 143: 720-725
- Maloy, S. R. and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173-180
- Maloy, S. R. and W. D. Nunn. 1981. Role of gene fadR in Escherichia coli acetate metabolism. J. Bacteriol. 148: 83-90
- McCleary, W. R., J. B. Stock, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175:2793-2798
- Miyake, M., C. Miyamoto, J. Schnackenberg, R. Kurane, and Y. Asada. 2000. Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl. Biochem. Biotechnol. 84-86: 1039-1044 https://doi.org/10.1385/ABAB:84-86:1-9:1039
- Notley, L. and T. Ferenci. 1996. Induction of RpoS-dependent functions in glucose-limited continuous culture: What level of nutrient limitation induces the stationary phase of Escherichia coli? J. Bacteriol. 178: 1465-1468
-
Nystr
$\ddot{o}$ m, T. 1994. The glucose-starvation stimulon of Escherichia coli: Induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12: 833-843 https://doi.org/10.1111/j.1365-2958.1994.tb01069.x - Park, C. and G. L. Hazelbauer. 1986. Mutations specifically affecting ligand interaction of the Trg chemosensory transducer. J. Bacteriol. 167: 101-109
-
Pr
$\ddot{u}$ ß, B. M. 1998. Acetyl phosphate and the phosphorylation of OmpR are involved in the regulation of the cell division rate in Escherichia coli. Arch. Microbiol. 170: 141-146 https://doi.org/10.1007/s002030050626 - Pruss, B. M. and A. J. Wolfe. 1994. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12: 973-984
- Rosenzweig, R. F., R. R. Sharp, D. S. Treves, and J. Adams. 1994. Microbial evolution in a simple unstructured environment:Genetic differentiation in Escherichia coli. Genetics 137: 903-917
- Shin, S. and C. Park. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177: 4696-4702
- Shin, S., S. G. Song, D. S. Lee, J. G. Pan, and C. Park. 1997. Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol. Lett. 146: 103-108 https://doi.org/10.1111/j.1574-6968.1997.tb10178.x
- Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96 https://doi.org/10.1016/0378-1119(87)90095-3
-
Spellerberg, B., D. R. Cundell, J. Sandros, B. J. Pearce, I. Id
$\ddot{a}$ np$\ddot{a}$ $\ddot{a}$ n-Heikkila, C. Rosenow, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19: 803-813 https://doi.org/10.1046/j.1365-2958.1996.425954.x - Sunnarborg, A., D. Klumpp, T. Chung, and D. C. LaPorte. 1990. Regulation of the glyoxylate bypass operon: Cloning and characterization of iclR. J. Bacteriol. 172: 2642-2649
- Wolfe, A. J. 2005. The acetate switch. Microbiol. Mol. Biol. Rev. 69: 12-50 https://doi.org/10.1128/MMBR.69.1.12-50.2005
- Yamamoto, K. and A. Ishihama. 2003. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol. Microbiol. 47: 183-194 https://doi.org/10.1046/j.1365-2958.2003.03287.x
- Zhang, X. and H. Bremer. 1995. Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J. Biol. Chem. 270:11181-11189 https://doi.org/10.1074/jbc.270.19.11181
Cited by
- Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase vol.4, pp.None, 2009, https://doi.org/10.1186/1752-0509-4-166
- Acetate accumulation through alternative metabolic pathways in ackA − pta − poxB − triple mutant in E. coli B (BL21) vol.32, pp.12, 2010, https://doi.org/10.1007/s10529-010-0369-7
- Characterization of E. coli MG1655 and frdA and sdhC mutants at various aerobiosis levels vol.154, pp.1, 2009, https://doi.org/10.1016/j.jbiotec.2011.03.015
- Adaptation of Glycolysis and Growth to Acetate in Sporolactobacillus sp. Y2-8 vol.168, pp.2, 2009, https://doi.org/10.1007/s12010-012-9789-2
- Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli vol.62, pp.4, 2012, https://doi.org/10.1007/s13213-012-0419-6
- Fermentation characterization of an L-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase vol.63, pp.4, 2009, https://doi.org/10.1007/s13213-012-0579-4
- Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations vol.13, pp.None, 2009, https://doi.org/10.1186/1471-2180-13-258
- Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of l-tryptophan by Escherichia coli vol.29, pp.5, 2009, https://doi.org/10.1007/s11274-012-1243-7
- A genome-wide screen for identifying all regulators of a target gene vol.41, pp.17, 2009, https://doi.org/10.1093/nar/gkt655
- SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli vol.454, pp.3, 2009, https://doi.org/10.1042/bj20130412
- High-level production of L-threonine by recombinant Escherichia coli with combined feeding strategies vol.28, pp.3, 2009, https://doi.org/10.1080/13102818.2014.927682
- Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli vol.98, pp.11, 2009, https://doi.org/10.1007/s00253-014-5613-y
- Optimization of carbon and nitrogen sources and substrate feeding strategy to increase the cell density ofStreptococcus suis vol.29, pp.4, 2009, https://doi.org/10.1080/13102818.2015.1039465
- Optimization of culture conditions to improve the expression level of beta1-epsilon toxin ofClostridium perfringenstype B inEscherichia coli vol.30, pp.2, 2016, https://doi.org/10.1080/13102818.2015.1126201
- Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co‐utilization in Escherichia coli vol.114, pp.4, 2017, https://doi.org/10.1002/bit.26217
- Metabolic engineering for improving L-tryptophan production in Escherichia coli vol.46, pp.1, 2009, https://doi.org/10.1007/s10295-018-2106-5