DOI QR코드

DOI QR Code

Preparation and Properties of EPDM/Thermoplastic Polyurethane Scrap Blends

EPDM/열가소성 폴리우레탄 스크랩 블렌드의 제조 및 물성

  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kang, Bo-Kyung (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Yoo, Hye-Jin (POSCO Technical Research Laboratories) ;
  • Kim, Jung-Soo (Korea Institute of Footwear & Leather Technology) ;
  • Jung, Young-Jin (Department of Biomaterial Science, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 강보경 (부산대학교 유기소재시스템공학과) ;
  • 유혜진 (포스코 기술연구소) ;
  • 김정수 (한국신발.피혁 연구소) ;
  • 정영진 (부산대학교 바이오소재과학과) ;
  • 이동진 (한국세라믹기술원) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Published : 2009.09.30

Abstract

The thermoplastic polyurethane waste (TPU-S) with good tensile properties, hardness, NBS abrasion resistance, specific gravity and low wet coefficient of kinetic friction was melt-blended with ethylene propylene diene monomer rubber (EPDM) with high wet slip resistance and low mechanical properties to form EPDM/TPU-S blend films, and their composition-property relationship was investigated to find the optimum composition for shoe outsole material. The properties except the wet slip resistance increased with increasing TPU-S contents in the blend. All the properties except elongation at break, specific gravity and the wet coefficient of kinetic friction in the range of $0{\sim}65\;wt%$ of TPU-S did not attain the values predicted by the simple additive rule. The optimum weight ratio of EPDM/TPU-S for the application to the typical shoe outsole material was found to be 30/70.

높은 강도, 경도, 신율, 비중 및 내마모성 등을 가진 채 폐기되는 열가소성 폴리우레탄 스크랩(TPU-S)과 습윤 상태의 내슬립성은 높으나 기계적 물성이 떨어지는 EPDM 고무의 용융 블렌드를 통해 신발 소재용 필름을 제조하고 조성과 특성과의 관계를 연구하였다. 블렌드 중의 TPU-S의 함량이 증가함에 따라 강도, 신도, 내마모성, 비중 및 경도 등 모든 물성이 증가하였으나, 습윤 상태의 내슬립성(동적마찰계수)은 크게 감소하였다. TPU-S 함량의 증가에 따라 블렌드의 파단신율은 단순혼합법칙 이상으로 증가하였으며, 습윤 상태의 내슬립성은 TPU-S가 $0{\sim}65%$ 범위에서 단순혼합법칙 이상이었다. 그러나 인장강도, 비중 및 내마모성은 모두 단순혼합법칙보다 낮은 값을 나타내었다. 이들 블렌드의 조성-특성 관계의 결과로부터 일반적으로 요구되는 신발 겉창용 소재의 물성에 충족되는 EPDM/TPU-S 블렌드의 조성은 무게비가 30/70인 것을 알 수 있었다.

Keywords

References

  1. Oh, J. H., Kim, S. D., and Kim, J. S., "Current Status for Resources Recycling in Korea," J. of Korean Inst, of Resources Recycling, 12(5), 3-9 (2003).
  2. Song, H. S., and Hyun, J. C, "Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials," Clean Tech., 7(2), 99-107 (2001).
  3. Folkes, M., and Hope, P. S., In Polymers Blends and Alloys, Blackie Academic Press, New York, 1992.
  4. Potschke, P., Wallheinke, K., Fritsche, H., and Stutz, H. "Morphology and Properties of Blends with Different Thermoplastic Polyurethanes and Polyolefmes," J. Appl. Polym. Sci, 64, 749-761 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<749::AID-APP14>3.0.CO;2-P
  5. Hepbure, C, In Polyurethane Elastomers, Appl. Sci., London, 1982.
  6. Palanivelu, K., Balakrishnan, S., and Rengasamy, P., "Thermoplastic Polyurethane Toughened Polyacetal Blends," Polym. Test., 19, 75-83 (2000). https://doi.org/10.1016/S0142-9418(98)00072-5
  7. Mark, H. F., In Encyclopedia of Polymer Science and Technology, Vol. 5, John Wiley & Sons Inc., New York, 2003, pp. 356-381.
  8. Easterbrok, E. K., and Allen, R. D., In Ethylene-Propylene Rubber in Rubber Technology, Morton, M. and van Nostrand Reinhold Co. Inc., New York, 1987, pp. 260-283.
  9. Gal, Y. S., "EPDM Rubber and its Applications," Polymer Science & Technology, 10(3), 325-334 (1999).
  10. Davis, S. C, Von Hellens, W., Zahalka, H. A., and Richter, K. P., In Ethylene-Propylene Elastomers in Polymeric Materials Encyclopedia, Vol. 3, Salamone J. C, CRC Press, New York, 1996, pp. 2264-2278.
  11. Kostadinova, M., Proietto, M., Jilov, N., and La Mantia, F. P. "Recycling of High Density Polyethylene," Polym. Degrad. Stabil, 57, 77-81 (1997). https://doi.org/10.1016/S0141-3910(96)00230-3
  12. Ahmed, N., Khan, J. H., Hussain, I., and, Hamid, S. H., "Thermal, Chemical and Mechanical Property Evaluation of Recycled-Reprocessed High Density Polyethylene," J. Polym. Mater., 16, 341-345 (1999).
  13. Liu, Z. Q., Cunha, A. M., Yi, X.-S, and Bernardo, A. C, "Properties to Understand the Performance of Polycarbonate Reprocessed by Injection Molding," J. Appl. Polym. Sci., 11, 1393-1400 (2000).
  14. Silvia Spinace, M. A., and De Paoli, M. A., "Characterization Poly(ethylene terephthalate) after Multiple Processing Cycles," J. Appl. Polym. Sci., 80, 20-25 (2001). https://doi.org/10.1002/1097-4628(20010404)80:1<20::AID-APP1069>3.0.CO;2-S
  15. La Mantia, F. P., Curto, D., and Scaffaro, R.," Recycling of Dry and Wet Polyamide 6," J. Appl. Polym. Sci., 86, 1899-1903 (2002). https://doi.org/10.1002/app.11136
  16. Scaffaro, R., and La Mantia, F. P., "Chracterization of Monopolymer Blend of Virgin and Recycled polyamide 6," Polym. Eng. Sci., 42, 2412-2417 (2002). https://doi.org/10.1002/pen.11127
  17. Lozano-Gonzalez, M. A. J., Rodriguez-Hernandez, M. A. T., Gonzalez-De los Santos, E. A., and Vilapando-Olmos, J. "Physical-Mechanical Properties and Morphological Study in Nylon-6 Recycling by Injection Molding," J. Appl. Polym. Sci., 76, 851-858 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<851::AID-APP11>3.0.CO;2-D
  18. Groning, M., and Hakkarainen, M., "Headspace Solid-Phase Microextraction with Gas Chromatography/Mass Spectrometry Reveals a Correlation between the Degradation Product Pattern and Changes in the Mechanical Properties during the Thermo-oxidation of In-plant Recycled Polyamide 6.6," J. Appl. Polym. Sci., 86, 3396-3407 (2002). https://doi.org/10.1002/app.11345
  19. Su, K. H., Lin, J. H., and Lin, C. C, "Influence of Reprocessing on the Mechanical Properties and Structure of Polyamide 6," J. Mater. Process. Tech., 192-193, 532-538 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.056
  20. Yang, J., Chen, X., Fu, R., Zhang, M., Chen, H., and Wang, J. "Dynamic Rheological and Morphological Study of the Compatibility of Thermoplastic Polyurethane/Ethylene-Octene Copolymer Blends," J. Appl. Polym. Sci., 109, 3452-3457 (2000). https://doi.org/10.1002/app.28412
  21. Bajsic, E. G., Smit, I., and Leskovac, M. "Blends of Thermoplastic Polyurethane, Polypropylene," J. Appl. Polym. Sci., 104, 3980-3985 (2007). https://doi.org/10.1002/app.26222
  22. Nair, T. M, Kumaran, M. G, and Unnikrishnan, G, "Mechanical and Ageing Properties of Cross-linked Ethylene Propylene Diene Rubber/Styrene Butadiene Rubber Blends," J. Appl. Polym. Sci., 93, 2606-2621 (2004). https://doi.org/10.1002/app.20669
  23. Ahn, W. S., "Thermal Characterization of an EDPM/IIR Rubber Blend using TG/DTG Analysis," Elastomer, 42(1), 55-58 (2007).
  24. Kim, J. K., and Lee, H. K., "Study on Manufacturing and Characteristics of Silicone/EPDM Rubber Blends," Polym.-Korea, 25, 406-413 (2001).
  25. Wu, L., Luo, X., and Wang, X., "Influence of Processing Conditions on Dual-phase Continuous Blend System of Thermoplastic Polyurethane with Ethylene-Propylene-Diene-Monomer Elastomer," J. Appl. Polym. Sci., 102, 5472-5482 (2006). https://doi.org/10.1002/app.25171
  26. Tan, J., Ding, Y. M., He, X. T., Liu, Y., An, Y., and Yang, W. M., "Abrasion Resistance of Thermoplastic Polyurethane Materials Blended with Ethylene-Propylene-Diene-Monomer Rubber," J. Appl. Polym. Sci., 110, 1851-1857 (2008). https://doi.org/10.1002/app.28756
  27. Oh, S. T, "A Study on Shoes for Culinarian Use in the Kitchen Environment," The Korean J. Culinary Research, 15(1), 296-308 (2009).
  28. The Polymer Society of Japan, In Recent Dictionary of Polymer, Asakura Shoten, 1988, p443.