DOI QR코드

DOI QR Code

A Study on the Development of Eco-friendly Materials Using EPDM Scrap : Functionalization of EPDM and PP

에틸렌-프로필렌 고무 스크랩을 이용한 친환경소재 개발에 관한 연구 : EPDM과 PP의 기능화

  • Kim, Sub (Department of Polymer Engineering, The University of Suwon) ;
  • Chung, Kyung-Ho (Department of Polymer Engineering, The University of Suwon)
  • 김섭 (수원대학교 신소재공학과) ;
  • 정경호 (수원대학교 신소재공학과)
  • Published : 2009.09.30

Abstract

The ethylene-propylene rubber (EPDM) scrap generated from automobile weatherstrip manufacturing process was used to make a thermoplastic elastomer through blending with polypropylene. The surface activated EPDM powder was obtained by the high temperature and shear pulverizer. The addition of surfactant resulted in more surface activated EPDM powder and the optimum loading amounts of surfactant was 1.5 phr. Maleic anhydride was grafted onto polypropylene by reactive blending to give functionalized polypropylene. The wetting property between EPDM scrap and polypropylene was improved by the addition of poly (ethylene-co-acrylic acid) as a compatibilizing agent. Poly(ethylene-co-acrylic acid) decreased the surface tension of polypropylene and thus would contribute to the wettability with EPDM powder.

자동차용 웨더스트립 제조공정 중 발생하는 에틸렌-프로필렌 고무 스크랩을 고온전단분쇄기를 이용하여 표면활성화 된 분말을 얻은 후 이를 폴리프로필렌과 블렌드하여 열가소성탄성체를 제조하기 위한 기초연구를 수행하였다. 에틸렌-프로필렌 고무 스크랩 분쇄 시 표면활성제를 1.5 phr 첨가하면 최적의 표면활성화 된 분말을 얻을 수 있었다. 폴리프로필렌의 경우는 maleic anhydride를 반응블렌드에 의해 그라프트시켜 기능화 하였다. 기능화된 에틸렌-프로펄렌 분말과 폴리프로필렌을 블렌드하여 열가소성탄성체를 제조할 때 계면젖음 특성이 중요하기 때문에 계면젖음성을 향상시키기 위하여 상용화제로 poly(ethylene-co-acrylic arid)를 폴리프로필렌에 첨가하였다. Poly(ethylene-co-acrylic acid)는 폴리프로필렌의 표면장력을 감소시켰으며 이로 인해 에틸렌-프로필렌 분말과의 계면젖음성이 크게 증진될 것으로 기대된다.

Keywords

References

  1. Bridgman, P. W., "Effect of High Shearing Stress Combined with High Hydrostatic Pressure," Phys. Rev., 48, 825-847 (1935). https://doi.org/10.1103/PhysRev.48.825
  2. Enikolopian, N. S., "Some Aspects of Chemistry and Physics of Plastic Flow," Pure Appl. Chem., 57, 1707-1711 (1985). https://doi.org/10.1351/pac198557111707
  3. Macher, M., and Mackillop, D. A., "Rubber Recycling," Rubber Chem. Technol, 75, 429-476 (2002). https://doi.org/10.5254/1.3547678
  4. Bhattacharya, A. K., Bhowmick, A. K., De, P., and De, S. K., "Recycling of EPDM Waste III. Processability of EPDM Compound Containing Ground EPDM Vulcanizates," J. Appl. Polym. Set, 87, 2204-2215 (2003). https://doi.org/10.1002/app.11474
  5. Luo, T., and Isayev, A. I., "Rubber/Plastic Blends Based on Devulcanized Ground Tire Rubber," J. Elastom. Plast., 30, 133-160 (1998). https://doi.org/10.1177/009524439803000204
  6. Guo, B., Cao, Y., Jia, D., and Qiu, Q., "Thermoplastic Elastomers Derived from Scrap Rubber Powder/LLDPE Blend with LLDPE-g-(Epoxidized NR) Dual Compatibilizer," Macromol. Mater. Eng., 289, 360-367 (2004). https://doi.org/10.1002/mame.200300311
  7. Mangaraj, D., Rubber Recycling, 1st ed., Taylor and Francis, New York, 2005.
  8. Deng, J. P., and Yang, W. T., "Self-initiating Performance of Maleic Anhydride on Surface Photografting Polymerization," J. Polym. Sci., 39, 3246-3249 (2001). https://doi.org/10.1002/pola.1307
  9. Goncalves, M. C, and Nunes, S. P., "In Situ Compatibilization of Polyamide 6/Natural Rubber Blend with Maleic Anhydride," Polymer, 41, 5929-5935 (2000). https://doi.org/10.1016/S0032-3861(99)00800-9
  10. Kiatkamjomwong, S., and Nakason, C, "Rheological and Curing Behavior of Reactive Blending L Mageated NR-Cassava Starch," J. Appl. Polym. Sci., 81, 2803-2813 (2001). https://doi.org/10.1002/app.1728
  11. Wu, S., Polymer Interface and Adhesion, Marcel Dekker, New York, 1982.