Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM)

포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용

  • Kim, Baik-Ho (Department of Environmental Science, Kon-kuk University) ;
  • Lee, Ju-Hwan (Department of Environmental Science, Kon-kuk University) ;
  • Kim, Yong-Jae (Department of Biology, Daejin University) ;
  • Hwang, Su-Ok (Paldang Dam Office, Korea Water Resources Corporation) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Kon-kuk University)
  • Published : 2009.09.30

Abstract

To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

패류를 이용한 오염하천의 수질개선 가능성을 확인하고자 CROM기술을 응용한 S-CROM기법을 개발하고 현장에 직접 적용하였다. 실험은 하천에 형성된 소형 보에서 실시하고 자연유속을 그대로 이용하였으며, 패류의 섭식활동을 위해 현장의 퇴적물을 첨가하였다. 실험은 처리조를 현장수(대조군), 현장수+퇴적물(대조군), 현장수+퇴적물+패류 30개체 (D1), 현장수+퇴적물+패류 60개체 (D2) 등 4가지로 구성하고, 유속은 450mL $min^{-1}$, 시료채취는 12시간(주, 야)간격으로 실시하였다. 환경요인으로는 현장에서 직접 수온, pH, DO, 전기전도도, 탁도 등을 측정하였고 시료를 채취하여 Chl-$\alpha$, SS, TN, TP, $NO_2$-N, $NO_3$-N, $NO_4$-N, $PO_4$-P, BOD, 식물플랑크톤 등을 분석하였다. 실험결과 유기물 제어능은 패류밀도와 처리시간에 따라 차이를 보였는데, 최대효과는 운영 2일째, 낮 동안 그리고 고밀도 처리군에서 나타났으며, 부유물질 (57%)과 조류(72%)의 감소를 보였다. 고농도의 암모니아와 인산을 배출하였던 CROM(김 등, 2009)보다 뚜렷하게 낮은 수준을 보였으며, 패류의 밀도효과는 유의하지 않았다. 비록 S-CROM이 CROM에 비하여 낮은 제어율을 보였으나 이는 상대적으로 낮은 패류밀도 및 빠른 유속 등이 원인으로 판단되었다. 따라서 S-CROM를 이용한 하천의 유기물 제어는 하천환경과 패류밀도를 적절하게 조합한다면 높은 수질개선 효과를 기대할 수 있을 것으로 사료되었다.

Keywords

References

  1. 권오길, 조동현, 박만갑, 이준상. 1985. 북한강 담수산 패류의 분포상에 관한연구. 한국폐류학회지 1:1-4
  2. 길봉섭. 1976. 담수산 이매패에 관한 생태학적 연구-분포와 형태변이. 한국육수학회지 9:29-38
  3. 김백호, 최민규, 황수옥, 고촌전자. 2000. 부영양호의 enclosure 내에서 어류의 밀도조절이 수질 및 플랑크톤 군집에 미치는 영향. 한국육수학회지 33:385-365
  4. 김백호, 정승원, 서미연, 한명수. 2005. 살조세균 적용이 식물플랑크톤 군집과 조류독소 분포에 미치는 영향. 한국육수학회지 38:261-270
  5. 김백호, 백순기, 황수옥, 황순진. 2009. 담수산 이매패 펄조개를 이용한 흐름형 유기물 제어 (CROM) 운영-퇴적물의 영향. 하천호수학회지 42:161-171
  6. 김용재. 2007. 도시화 정도에 따른 포천천과 영평천의 돌부착 규조 군집 변화. 한국육수학회지 40:468-480
  7. 이송희, 황순진, 김백호. 2008a. 저온기 부영양 수계의 규조발생에 대한 말조개의 섭식특성. 하천호수학회지 41:237-246
  8. 이송희, 화운진, 김백호. 2008b 저온기 규조발생 억제를 위한 패류의 혼합적용. 하천호수학회지 41:402-411
  9. 이송희, 백순기, 황순진, 김백호. 2009. 부영양호수의 저온기와 고온기 식물플랑크톤에 대한 말조개의 섭기능 비교. 하천호수학회지 42:115-123
  10. 이주환, 황순진,박선구,황수옥,유춘만, 김백호.2009. CROM를 이용한 부영양 저수지의 유기물제어: 이미패의 종 특이성에 대하여. 하천호수학회지 42:350-363
  11. 황순진, 전미진, 김난영, 김백호. 2008. 하눅산 논우렁이의 유해조류 섭식율 및 배설물 생산. 하천호수학회지 41:77-85
  12. APHA. 1995. Standards methods for the examination of water and wastewater (19th ed). American Public Health Association, Washington, D.C
  13. Barclay, H. 2007. Propagation of the Chinese giant mussel, Anodonta woodiana, for conservation and biomanipulation. Molluscan Forum 2007. 13th Nov. 2007, London
  14. Budd, J.W., T.D. Drummer, T.F. Nalepa and G.L. Fahnenstiel. 2001. Remote sensing of biotic effects: Zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron, Michigan. Limnol. Ocea· nogr. 46: 213-223
  15. Caracco, N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay and D.T. Fischer. 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588-602 https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2
  16. Carpenters, S.R, J.F. Kitchell and J.R Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634-639 https://doi.org/10.2307/1309989
  17. Choi, H.J., B.H. Kim, J.D. Kim and M.S. Han. 2005. Streptomyces neyagawaensis as a control for the harzardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwater. Biol. Control. 33: 335-343 https://doi.org/10.1016/j.biocontrol.2005.03.007
  18. Cohen, RRH., P.V. Dresler, E.J.P. Phillips and RL. Cory. 1984. The effect of the Asiatic clam, Corbicula fiuminea, on the phytoplankton of the Potomac River, Maryland. Limnol. Oceanogr. 29: 170-180 https://doi.org/10.4319/lo.1984.29.1.0170
  19. Coughlan, J. 1969. The estimation of filtration rates from the clearance of suspensions. Mar. Biol. 2: 256-258
  20. Dame, RF. 1996. Ecology of marine bivalves: An ecosystem approach. CRC Press, Boca Raton, 254
  21. Dionisio Pires, L.M., B.M. Bontes, E. Van Donk and B.W. Ibelings. 2005. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J. Plankton Res. 27: 331-339 https://doi.org/10.1093/plankt/fbi008
  22. Fanslow, D., T.F. Nalepa and G.A Lang. 1995. Filtration rate of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 517-528 https://doi.org/10.1016/S0380-1330(95)71063-2
  23. Fukushima, M., N. Takamura, B.H. Kim, M. Nakagawa, L. Sun and Y. Zheng. 2001. The responses of an aquatic ecosystem to the manipulation of the filter-feeding silver carp (Hypophthalmichthys molitrix) Verh. Internat. Verein. Limnol. 27: 1-7
  24. Harper, D. 1992. Eutrophication of freshwater: principles, problems and restoration. London: Chapman and Hall
  25. Holland, RE. 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. J. Great Lakes Res. 19: 617-624 https://doi.org/10.1016/S0380-1330(93)71245-9
  26. Hwang, S.J., H.S. Kim, J.K Shin, J.M. Oh and D.S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515:161-179 https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  27. Hwang, S.J., H.S. Kim, J.H. Park and B.H. Kim. 2009. Effects of cyanobacterium Microcystis aeruginosa on the filtration rates and mortality of the freshwater bivalve Corbicula leana Prime. J. Environ. BioI. In press
  28. Kehde, P.M. and J.L. Wilhm. 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Naturalist 87: 8-24 https://doi.org/10.2307/2423878
  29. Kim, B.H., S.J. Hwang, Y.O. Kim, S.O. Hwang, N. Takamura and M.S. Han. 2007. Effects of biological control agents on nuisance cyanobacterial and diatom blooms in freshwater system. Microbes. Environ. 22: 52-58
  30. Kim, B.H., M. Sang, S.J. Hwang and M.S. Han. 2008. In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: implications for biological bloom control. Limnol. Oceanogr .: Methods 6: 513-522
  31. Lauritsen, D.D. 1986. Filter-feeding in Corbicula fluminea and its effect on seston removal. J. N. Am. Benth. Soc. 5:165-172 https://doi.org/10.2307/1467704
  32. Mason, C.F. 1996. Biology of freshwater pollution. Harlow, Essex: Longman
  33. Mayali, X. and F. Azam. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51: 139-144 https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  34. Mclvor, AL. 2004. Freshwater mussels as biofilters. Ph.D. thesis. Pembroke College. 157
  35. Mellina, E., J.B. Rasmussen and E.L. Mills. 1995. Impact of mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can. J. Fish. Aquat. Sci. 52: 2553-2573 https://doi.org/10.1139/f95-246
  36. Moss, B. 1992. The scope for biomanipulation in improving water quality, p. 73-81. In: Eutrophication: research and application to water supply (Sutcliffe, D.W. and J.G. Jones, eds.). Far Sawry, Cumbria, UK: Freshwater Biological Association
  37. Newell, R 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. J. Shell. Res. 23: 51-61
  38. Nicholls, KH. and G.J. Hopkins. 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637-647 https://doi.org/10.1016/S0380-1330(93)71251-4
  39. Officer, C.B., T.J. Smayda and R Mann. 1982. Benthic filter feeding: a natural eutrophication control. Mar. Ecol. Prog. 9: 203-210 https://doi.org/10.3354/meps009203
  40. Osenberg, C.W. 1989. Resource limitation, competition, and the influence oflife history in a freshwater snail community. Oceanogia 79: 512-519
  41. Phelps, H.L. 1994. The Asiatic clam (Corbicula fluminea) invasion and system level ecological change in the Potomac River estuary near Washington, DC. Estuaries 17: 614-621 https://doi.org/10.2307/1352409
  42. Reeders, H.H. and A Bij de Vaate. 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia 239: 53-63 https://doi.org/10.1007/BF00027529
  43. Shapiro, J. 1990. Biomanipulation: the next phase-making it stable. Hydrobiologia 200/201: 13-27 https://doi.org/10.1007/BF02530325
  44. Sigee, D.C., R Glenn, M.J. Andrews, E.G. Bellinger, RD. Butler, H.A.S. Epton and RD. Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396: 161-172 https://doi.org/10.1023/A:1017097502124
  45. Smit, H.A, E.H. Bij de Vaate, van Nes and RH. Noordhuis. 1993. Colonization, ecology and positive aspects of zebra mussels (Dreissena polymorpha) in The Netherlands, p. 55-77. In: Zebra Mussels: Biology, impact, and control (Nalepa, T.F. and D.W. Schloesser, eds.). Lewis Publishers, Bocaraton, FL
  46. Smith, T.E., RJ. Stevenson, N.F. Caracco and J.J. Cole. 1998. Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion ofthe Hudson River (New York). J. Plankton Res. 20:1567-1579 https://doi.org/10.1093/plankt/20.8.1567
  47. Strayer, D.L., N.F. Caraco and J.J. Cole. 1999. Transforma tion of freshwater ecosystems by bivalves, a case study of zebra mussels in the Hudson River. Bioscience 49:19-27 https://doi.org/10.2307/1313490
  48. Talling, J.F. 2003. Phytoplankton-zooplankton seasonal timing and the 'clear-water phase' in some English lake. Freshwater Bioi. 48: 39-52 https://doi.org/10.1046/j.1365-2427.2003.00968.x
  49. Weber, L.M. and D.M. Lodge. 1990. Periphytic food and predatory crayfish: relative roles in determining snail distribution. Oecologia 82: 33-39 https://doi.org/10.1007/BF00318530
  50. Wu, J.T., L.L. Kuo-Huang and J. Lee. 1998. Algicidal effect of Peridinium bipes on Microcystis aeruginosa. Current Microbial. 37: 257-261 https://doi.org/10.1007/s002849900375