DOI QR코드

DOI QR Code

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Kim, Sung-Eun (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Kim, Zee-Won (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Yu, Yun-Sik (Convergence of IT Devices Institute Busan, Dong-Eui University)
  • Published : 2009.08.31

Abstract

$H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

Keywords

References

  1. P. Siciliano, Sens. Actuators B 70, 153 (2000). https://doi.org/10.1016/S0925-4005(00)00585-2
  2. K. Ihokura and J. Watson, CRC Press, Boca Raton, p. 78, 1994
  3. N. Yamazoe, J. Tamaki, and N. Miura, Mater. Sci. Eng. B 41, 178 (1996). https://doi.org/10.1016/S0921-5107(96)01648-0
  4. T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, J. Mater. Chem. 4, 1259 (1994). https://doi.org/10.1039/jm9940401259
  5. J. Tamaki, T. Maekawa, N. Miura, and N. Yamazoe, Sens. Actuators B 9, 197 (1992). https://doi.org/10.1016/0925-4005(92)80216-K
  6. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sens. Actuators B 49, 121 (1998). https://doi.org/10.1016/S0925-4005(98)00144-0
  7. T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, Chem. Lett. 20, 575 (1991). https://doi.org/10.1246/cl.1991.575
  8. J.-W. Lim, D.-W. Kang, D.-S. Lee, J.-S. Huh, and D.-D. Lee, Sens. Actuators B 77, 139(2001). https://doi.org/10.1016/S0925-4005(01)00685-2
  9. V. Lantto and J. Mizsei, Sens. Actuators B 5, 21 (1991). https://doi.org/10.1016/0925-4005(91)80214-5
  10. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miyura, and N. Yamazoe, Sens. Actuators B 49, 121 (1998). https://doi.org/10.1016/S0925-4005(98)00144-0
  11. L. Jianping, W. Yue, G. Xiaoguang, M. Qing, W. Li, and H. Jinghong, Sens. Actuators B 65, 111 (2000). https://doi.org/10.1016/S0925-4005(99)00406-2
  12. A. Galdikas, V. Jasutis, S. Kaciulis, G. Mattogno, A. Mironas, V. Olevano, D. Senuliene, and A. Setkus, Sens. Actuators B 43, 140 (1997). https://doi.org/10.1016/S0925-4005(97)00206-2
  13. M. de la L. Olvera and R. Asomoza, Sens. Actuators B 45, 49 (1997). https://doi.org/10.1016/S0925-4005(97)00269-4
  14. D.-D. Lee, Sens. Actuators B 20, 301 (1989). https://doi.org/10.1016/0250-6874(89)80129-5
  15. R. B. Vasiliev, M. N. Rumyantseva, S. E. Podguzova, A. S. Ryzhikov, L. I. Ryabova, and A. M. Gaskov, Mater. Sci. Eng. B 57, 241 (1999). https://doi.org/10.1016/S0921-5107(98)00432-2
  16. M. N. Rumyantseva, M. Labeau, J. P. Senateur, G. Delabouglise, N. Boulova, and A. M. Gaskov, Mater. Sci. Eng. B 41,228 (1996). https://doi.org/10.1016/S0921-5107(96)01601-7
  17. C.-H. Shim, D.-S. Lee, S.-I. Hwang, M.-B. Lee, J.-S. Huh, and D.-H. Lee, Sens. Actuators B 81,176 (2002). https://doi.org/10.1016/S0925-4005(01)00949-2
  18. W. Qu, W. Wlodarski, and M. Austin, Microelectron. J. 31, 561 (2000). https://doi.org/10.1016/S0026-2692(00)00030-6
  19. C. H. Shim, D. S. Lee, S. I. Hwang, M. B. Lee, J. S. Huh, and D. D. Lee, Sens. Actuators B 81, 176 (2002). https://doi.org/10.1016/S0925-4005(01)00949-2
  20. O.-S. Kwon, S.-I. Hwang, C.-H. Shim, B.-C. Kim, G.-H. Rue, J.-S. Huh, and D.-D. Lee, Sens. Actuators B 89, 158 (2003). https://doi.org/10.1016/S0925-4005(02)00458-6
  21. J. Lalande, R. Ollitrault-Fichet, and P. Boch, J. Eur. Ceram. Soc. 20, 2415 (2000). https://doi.org/10.1016/S0955-2219(00)00153-9
  22. V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, Sens. Actuators B 96, 245 (2003). https://doi.org/10.1016/S0925-4005(03)00532-X

Cited by

  1. Development of a SnO2/CuO-coated surface acoustic wave-based H2S sensor with switch-like response and recovery vol.169, 2012, https://doi.org/10.1016/j.snb.2012.01.002
  2. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa369
  3. Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film vol.195, 2014, https://doi.org/10.1016/j.snb.2014.01.045
  4. SnO2: CuSb2O6 Thin Films Prepared by Pulsed Laser Deposition vol.115, pp.1, 2010, https://doi.org/10.1080/10584587.2010.503507
  5. Selective deposition of CuO/SnO2 sol–gel on porous SiO2 suitable for the fabrication of MEMS-based H2S sensors vol.173, 2012, https://doi.org/10.1016/j.snb.2012.07.104
  6. Co3O4–SWCNT composites for H2S gas sensor application vol.222, 2016, https://doi.org/10.1016/j.snb.2015.08.072