DOI QR코드

DOI QR Code

Controllable Pretilt Angles for Liquid Crystal Molecules using a Rubbing Treated Mixture Layer

  • Kim, Dae-Hyun (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Hong-Gyu (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Young-Hwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Byoung-Yong (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Ok, Chul-Ho (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Seo, Dae-Shik (Department of Electrical and Electronic Engineering, Yonsei University)
  • Published : 2009.08.31

Abstract

We have investigated the continuous pretilt angle generation for liquid crystals using a rubbing treated mixture layer consisting of homogeneous and homeotropic polyimides. Various pretilt angles in the range from $0^{\circ}$ to $60^{\circ}$ were achieved as a function of the concentration of homeotropic PI. The transmittance characteristics used to measure the pretilt angle showed that the pretilt angles were measured with a high reliability. We observed uniform liquid crystal alignment on the rubbing treated mixture layer.

Keywords

References

  1. D.-S. Seo, K. Muroi, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 213, 223 (1992). https://doi.org/10.1080/10587259208028733
  2. B. O. Myrvold and K. Kondo, Liq. Cryst. 17, 437 (1994). https://doi.org/10.1080/02678299408036582
  3. R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, Phys. Rev. E. 58, 5914 (1998). https://doi.org/10.1103/PhysRevE.58.5914
  4. J.-M. Han, C.-H. Ok, J.-Y. Hwang, and D.-S. Seo, Trans. Electr. Electorn. Mater. 8, 166 (2007). https://doi.org/10.4313/TEEM.2007.8.4.166
  5. Y.-H. Kim, K.-M. Lee, B.-Y. Kim, B.-Y. Oh, J.-M. Han, and D.-S. Seo, Trans. Electr. Electron. Mater. 10, 16 (2009). https://doi.org/10.4313/TEEM.2009.10.1.016
  6. M. F. Toney, T. P. Russell, J. A. Logan, H, Kikuchi, J. M. Sands, and S. K. Kumar, Nature 374, 709 (1995). https://doi.org/10.1038/374709a0
  7. H.-G. Park, B.-Y. Oh, Y.-H. Kim, B.-Y. Kim, J.-M. Han, J.-Y. Hwang, and D.-S. Seo, Electrochem. Solid-State Lett. 12, J37 (2009). https://doi.org/10.1149/1.3074331
  8. B.-Y. Oh, J.-H. Lim, K.-M. Lee, Y.-H. Kim, B.-Y. Kim, J.-M. Han, S.-K. Lee, D.-S. Seo, and J.-Y. Hwang, Electrochem. Solid-State Lett. 11, H331 (2008). https://doi.org/10.1149/1.2990221
  9. F. S. Yeung, Y. W. Li, and H. S. Kwok, Appl. Phys. Lett. 88, 041108(2006). https://doi.org/10.1063/1.2165284
  10. T. Uchida, M. Ohgawara, and M. Wada, Jpn. J. Appl. Phys. 19, 2127 (1980). https://doi.org/10.1143/JJAP.19.2127
  11. D. S. Seo, J. Appl. Phys. 86, 3594 (1999). https://doi.org/10.1063/1.371264
  12. J. B. Kim, K. C. Kim, H. J. Ahn, B. H. Hwang, J. T. Kim, S. J. Jo, C. S. Kim, H. K. Baik, C. J. Choi, M. K. Jo, Y. S. Kim, J. S. Park, and D. Kang, Appl. Phys. Lett. 91, 023507 (2007). https://doi.org/10.1063/1.2757121
  13. H. J. Ahn, J. B. Kim, K. C. Kim, B. H. Hwang, J. T. Kim, H. K. Baik, J. S. Park, and D. Kang, Appl. Phys. Lett. 90, 253505 (2007). https://doi.org/10.1063/1.2749843