• Title/Summary/Keyword: Hydrogen sulphide ($H_2S$)

Search Result 8, Processing Time 0.022 seconds

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y.;Saud, H.M.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.

Tin Sulphide Thin Films Formed by Sulphidising D.C. Magnetron Sputtered Layers of Tin Using $H_2S$ ($H_2S$ 가스를 이용한 황화주석 박막 증착에 관한 연구)

  • Leach, M.;Jang, D.Y.;Miles, R.
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.317-321
    • /
    • 2010
  • Thin films of tin sulphide (SnS) have been formed by a novel 2-stage process where-in D.C. magnetron sputtering was used to deposit to thin films of tin (Sn) and the layers then sulphidised using 5% hydrogen sulphide ($H_2S$) gas in Argon. Although it was not found possible to deposit high quality thin films of tin directly onto glass substrates, excellent layers of tin were produced by using molybdenum (Mo) coated glass as the substrate material. The chemical and physical properties of the SnS layers formed were determined using scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction studies and using reflectance versus wavelength measurements and these related to the conditions of synthesis. The data shows that it should be possible to produce conventional "substrate structure" devices based on the use of this technology.

Effect of Non-metallic Inclusions on Heat Affected Zone Delayed Cracking of High Strength Steels by Hydrogen (고장력강 용접열영향부의 지연균열에 미치는 개재물의 영향)

  • 엄동석;정호신;익본공
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.49-59
    • /
    • 1989
  • The effect of non-metallic inclusions on the HAZ hydrogen induced cracking was investigated. Quench and temper high tensile strength steels containing various sulphur contents were employed. The sulphur contents range between 0.007% and 0.040%. Non-metallic inclusions were mainly MnS type sylphide and Mn-Al-Si type. The sensitivity of HAZ delayed cracking was evaluated by implant testing. Diffusible hydrogen content was varied by controlling the moisture absorbing condition of manual arc welding electrodes. The one was asreceived condition, the other was dipping the electrodes in the water for ten minutes. The main results obtained were as follows; 1) The results of implant test showed that critical stress increased with increasing S content up to 0.013%. But steel containing 0.040%S showed lower critical stress than that of 0.013% S. These result suggest that there will be optimum S content to prevent HAZ delayed cracking of high strength steels. 2) Under the lower D.H.C. level, critical stress was increased with rolling reduction, but higher D.H.C. level, effect of rolling reduction was not recognized.

  • PDF

Global Trends of Sciences Information on the Sour Gas (사워가스 학술정보 동향)

  • Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • The sour gas is natural gas containing components such as hydrogen sulphide and carbon dioxide that form acids when mixed with water. Element sulfur precipitates from sour gas when reservoir pressure and temperature decrease. According to the International Energy Agency, about 43% of the world's natural gas reserves(2,580 tcf or 73.057 tcm), excluding North America, are sour. The sour gas is often derived from the Germanic word 'sauer or acidic' and the etymology referred to as 'sour'. Sour gas requires special handling and infrastructure because it contains significant amounts of hydrogen sulphide, making it highly corrosive, flammable and explosive, and there fore more costly and dangerous to process. So the business of sour gas is affected by two important factors: the economic value of the gas, and the methods used in its production. According to be analyzed in the academic literature to sour gas(2000~2014) by the program of 'web of science', the research activities 145 papers in sour gas.

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon;Kim, Sung-Eun;Kim, Zee-Won;Yu, Yun-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.135-139
    • /
    • 2009
  • $H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

Effects of Dietary Enterococcus faecium SF68 on Growth Performance, Nutrient Digestibility, Blood Characteristics and Faecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, I.H.;Kim, S.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.406-411
    • /
    • 2006
  • The objective of this study was to investigate the effects of feeding probiotic (Enterococcus faecium SF68, EF) on growth performance, nutrient digestibility, blood characteristics and faecal noxious gas content in finishing pigs. A total of eighty [($Landrace{\times}Yorkshire$)${\times}Duroc$] pigs with an initial BW of $50.47{\pm}2.13kg$ were used in this 8-week experiment. Pigs were allotted to four treatments (4 replicates per treatment and 5 pigs per pen) according to a randomized complete block design. Dietary treatments were: 1) CON (control; basal diet), 2) CTC (control diet+0.1% antibiotic, chlortetracycline), 3) EF1 (control diet+0.1% probiotic, EF) and 4) EF2 (control diet+0.2% probiotic, EF). During weeks 0-4, ADG was not affected by the addition of antibiotic or EF (p>0.05). In weeks 4-8, ADG tended to increase in CTC and EF treatments compared to CON treatment (p<0.10). ADFI and gain/feed were not affected in each 4-week period and the entire experimental period (p>0.05). Digestibilities of DM and N were higher in EF supplemented treatments than in CON and CTC treatments (p<0.05). Blood characteristics of WBC, RBC and lymphocyte were not affected in pigs given diets containing EF (p>0.05). Supplementation of EF in the diet decreased faecal ammonia nitrogen ($NH_3$-N) and hydrogen sulphide ($H_2S$) concentrations (p<0.05). Faecal acetic acid concentration tended to decrease (p<0.10) while propionic acid and butyric acid concentrations were significantly lower on diets with EF supplementation than on the diet containing antibiotic (p<0.05). In conclusion, dietary supplementation of EF can increase nutrient digestibility and decrease faecal $NH_3$-N, $H_2S$ and volatile fatty acid (VFA) concentrations in finishing pigs.

The Impact of Side Reactions in Sulfur Recovery Unit Design (황 회수 공정 설계에서 부 반응의 영향)

  • Kim, Sung Ho;Jung, Won Seok;Lee, Hee Mun;Chang, Geun Soo
    • Plant Journal
    • /
    • v.13 no.3
    • /
    • pp.36-46
    • /
    • 2017
  • In the reaction furnace of modified Claus process, chemical equilibrium reactions and kinetic reactions occur simultaneously. The main kinetic components are hydrogen ($H_2$), carbon monoxide (CO), carbonyl sulphide (COS) and carbon disulphide ($CS_2$). The equilibrium calculations, empirical correlations and sulfur recovery technology providers' (licensors) data for kinetic components (COS and $CS_2$) in the reaction furnace were analyzed to evaluate the amount of kinetic components by applying them to five different projects in which GS Engineering & Construction participated. Kinetic components ($H_2$ and CO) are also calculated and the results are analyzed to evaluate the impact of temperature in the reaction furnace and the waste heat boiler. Total required $O_2$ deviations for combustion in the reaction furnace are additionally shown, with and without side reactions. A full understanding of side reactions in the modified Claus process can help to improve sulfur recovery efficiency and optimize equipment design.

  • PDF

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.