AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY OF STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Raflq, Arif (DEPARTMENT OF MATHEMATICS, COMSATS INSTITUTE OF INFORMATION TECHNOLOGY) ;
  • Lee, Byung-Soo (DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY)
  • Published : 2009.08.31

Abstract

The purpose of this paper is to establish a strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of continuous strongly pseudocontractive mappings. The results presented in this paper extend and improve the corresponding results of References [2, 6, 11-12].

Keywords

References

  1. H. H. Bauschke: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996), 150-159. https://doi.org/10.1006/jmaa.1996.0308
  2. C. E. Chidume & N. Shahzad: Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings. Nonlinear Anal. (TMA) 62 (2005), 1149-1156. https://doi.org/10.1016/j.na.2005.05.002
  3. K. Deimling: Zero of accretive operators. Manuscripta Math. 13 (1974), 365-374. https://doi.org/10.1007/BF01171148
  4. B. Halper: Fixed points of nonexpansive maps. Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  5. P. L. Lions: Approximations de points fixes de contractions. C. R. Acad. Sci. Paris Ser. A. 284 (1977), 1357-1359.
  6. M. O. Osilike: Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps. J. Math. Anal. Appl. 294 (2004), no. 1, 73-81. https://doi.org/10.1016/j.jmaa.2004.01.038
  7. S. Reich: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  8. X. Weng: Fixed point iteration for local strictly pseudocontractive mappings. Proc. Amer. Math. Soc. 113 (1991), no. 3, 727-731. https://doi.org/10.1090/S0002-9939-1991-1086345-8
  9. R. Wittmann: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58 (1992), 399-404. https://doi.org/10.1007/BF01189933
  10. H. K. Xu: Inequalities in Banach spaces with applications. Nonlinear Anal. (TMA) 16 (1991), no. 12, 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
  11. H. K. Xu & R. Ori: An implicit iterative process for nonexpansive mappings. Numer. Funct. Anal. Optim. 22 (2001), 767-773. https://doi.org/10.1081/NFA-100105317
  12. Y. Zhou & S. S. Chang: Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Appl. 23 (2002), 911-921. https://doi.org/10.1081/NFA-120016276