ON THE DEBREU INTEGRAL OF FUZZY MAPPINGS IN BANACH SPACES

  • Park, Chun-Kee (DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY)
  • Published : 2009.08.31

Abstract

In this paper, we introduce Debreu integral of fuzzy mappings in Banach spaces in terms of the Debreu integral of set-valued mappings, investigate properties of Debreu integral of fuzzy mappings in Banach spaces and obtain the convergence theorem for Debreu integral of fuzzy mappings in Banach spaces.

Keywords

References

  1. C. L. Byme: Remarks on the set-valued integrals of Debreu and Aumann. J. Math. Anal. Appl. 62 (1978), 243-246. https://doi.org/10.1016/0022-247X(78)90123-3
  2. B. Cascales & J. Rodriguez: Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 297 (2004), 540-560. https://doi.org/10.1016/j.jmaa.2004.03.026
  3. C. Castaing & M. Valadier: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., Vol. 580, Springer-Verlag, Berlin, 1977.
  4. G. Debreu: Integration of correspondences. Univ. California Press, Berkeley, CA, 1967.
  5. J. Diestel & J. J. Uhl Jr.: Vector measures. Math. Surveys, Vol. 15, Amer. Math. Soc., Providence R.I., 1977.
  6. F. Hiai & H. Umegaki: Integrals, conditional expectations, and martingales of multi-valued functions. J. Multivariate Anal. 7 (1977), 149-182. https://doi.org/10.1016/0047-259X(77)90037-9
  7. E. Klein & A. C. Thompson: Theory of Correspondences. John Wiley & Sons, New York, 1984.
  8. N. Papageorgiou: On the theory of Banach space valued multifunctions. J. Multivariate Anal. 17 (1985), 185-206. https://doi.org/10.1016/0047-259X(85)90078-8
  9. O. Kaleva: Fuzzy differential equations. Fuzzy Sets and Systems 24 (1987), 301-317. https://doi.org/10.1016/0165-0114(87)90029-7
  10. X. Xue, M. Ha & M. Ma: Random fuzzy number integrals in Banach spaces. Fuzzy Sets and Systems 66 (1994), 97-111. https://doi.org/10.1016/0165-0114(94)90303-4
  11. X. Xue, X. Wang & L. Wu: On the convergence and representation of random fuzzy number integrals. Fuzzy Sets and Systems 103 (1999), 115-125. https://doi.org/10.1016/S0165-0114(97)00150-4