GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL EQUATIONS

  • Kim, Hark-Mahn (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY) ;
  • Son, Eun-Yonug (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2009.08.31

Abstract

In this paper, we obtain the general solution and the generalized HyersUlam stability theorem for an additive functional equation $af(x+y)+2f({\frac{x}{2}}+y)+2f(x+{\frac{y}{2})=(a+3)[f(x)+f(y)]$for any fixed integer a.

Keywords

References

  1. A. L. Cauchy: Cours d'analyse de l' Ecole Polytechnique, Vol. I, Analyse algebrique. Debure. Paris, 1821.
  2. Z. Gajda: On the stability of additive mappings. Internat. J. Math. Math. Sd. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  3. P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  4. D. H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  5. D. H. Hyers, G. Isac & Th. M. Rassias: Stability of Functional Equations in Several Variables. Birkhauser, Basel, 1998.
  6. A. Najati: Stability of homomorphisms on J $B^{\ast}-triples$ associated to a Cauchy-Jensen type functional equation. J. Math. Ineq. 1 (2007), 83-103.
  7. J. M. Rassias & H.-M. Kim: Generalized Hyers-Ulam stability for general additive functional equations in quasi-${\beta}$-normed spaces. J. Math. Anal. Appl. 356 (2009), 302-309. https://doi.org/10.1016/j.jmaa.2009.03.005
  8. Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  9. Th. M. Rassias: The stability of mappings and related topics, In 'Report on the 27th ISFE'. Aequationes. Math. 39 (1990), 292-293.
  10. Th. M. Rassias & P. Semrl: On the behaviour of mappings which do not satisfy Hyers-Ulam-Rassias stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
  11. S. M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.