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AN IMPLICIT ITERATION PROCESS FOR A FINITE FAMILY
OF STRONGLY PSEUDOCONTRACTIVE MAPPINGS

ARIF RAFLQ? AND BYUNG-S00 LEEY*

ABSTRACT. The purpose of this paper is to establish a strong convergence of an
tmplicit iteration process with errors to a common fixed point for a finite family
of continuous strongly pseudocontractive mappings. The results presented in this
paper extend and improve the corresponding results of References [2, 6, 11-12].

1. INTRODUCTION

From now onward, we assume that K is a nonempty closed convex subset of a
real Banach space E. Let J denote the normalized duality mapping from E to 27
defined by

J@)={f" € E": (z, ") = |le|* and || f*[| = ||z}
where E* denotes the dual space of E and (-,-) denotes the generalized duality
pairing. We shall denote the single-valued duality mapping by j.

Definition 1.1. A mapping T with domain D(T) and range R(T) in E is called
strongly accretive if there exists a constant 0 < k < 1 such that, for each z, y € D(T),
there is a j(z — y) € J(z — y) satisfying

(1) (Tz =Ty, j(z - y)) 2 kllz - ylI*.
Definition 1.2. A mapping T" with domain D(T) and range R(T) in E is called

strongly pseudocontractive if for all z, y € D(T), there exist j(z — y) € J(z — v)
and a constant 0 < k < 1 such that

(2) (Tz — Ty, j(x ~y)) > (1 - k)llz — y||>.
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1t is known that T is strongly pseudocontractive if and only if (I —T') is strongly
accretive.

In 2001, Xu and Ori [11] introduced the following implicit iteration process for a
finite family of nonexpansive mappings {7} : i € I} (here I = {1,2,---,N}), with
{on} a real sequence in (0,1), and an initial point zg € K:

z1 = oo + (1 — on)Thzy,

Tz = agr1 + (1~ ag)Txs,

zny = anyzy-1+ (1 —an)Tnzn,

INy1 = ang1ZN + (1= anvg1)IN+1TN 41,

which can be written in the following compact form:
(3) ZTn = anZn-1+ (1 — ap)Tpzy, forall n>1,

where T, = T}, (mod &) (here the mod N function takes values in I). Xu and Ori
proved the weak convergence of this process to a common fixed point of the finite
family of nonexpansive mappings defined in a Hilbert space. They further remarked
that it is yet unclear what assumptions on the mappings and/or the parameters
{oy,} are sufficient to guarantee the strong convergence of the sequence {z,}.

In [12], Zhou and Chang studied the weak and strong convergence of this implicit
process to a common fixed point for a finite family of nonexpansive mappings. More
precisely, they proved the following result.

Theorem 1.1 ([12, Theorem 3]). Let E be a uniformly convex Banach space and

K be a nonempty closed convez subset of E. Let {T; : i € I} be N semi-compact
N

nonezpansive self-mappings of K with F = () F(T;) # 0 (here F(T;) denotes the

i=1

set of fixed points of T;). Suppose that zo € K and {an} C (b,c) for some b,
¢ € (0,1). Then the sequence {x,} defined by the implicit iteration process (3)
converges strongly to a common fixed point in F.

Definition 1.3 ({2]). A family {T; : ¢ € I} of N self-mappings of K with F' =
N

N F(T;) # 0 is said to satisfy condition (A) on K if there is a nondecreasing

i=1
function f : [0, 00] — [0, cc] with f(0) = 0 and f(r) > 0 for all r € (0, c0) such that
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forallz e K

max |z - Tial) > f(d(, F).

In [2], Chidume and Shahzad studied the strong convergence of the implicit pro-
cess (3) to a common fixed point for a finite family of nonexpansive mappings. They
proved the following results.

Theorem 1.2 ([2, Theorem 3.2]). Let E be a uniformly conver Banach space and
K be a nonempty closed conver subset of E. Let {T; : i € I} be N nonezpansive
self-mappings of K with F = ﬂ F(T;) # 0. Suppose that {T; : i € I} satisfies
condition (A). Let {om}n>1 C [5 1— 4] for some & € (0,1). From arbitrary zo € K,

define the sequence {x,} by the implicit iteration process (3). Then {x,} converges

strongly to a common fized point of the mappings {T; : 1 € I}.

Theorem 1.3 ([2, Theorem 3.3]). Let E be a uniformly conver Banach space and
K be a nonempty closed conveaz subset of E. Let {T; : i € I} be N nonezxpansive
self-mappings of K with F = ﬂ F(T;) # 0. Suppose that one of the mappings in

{T; : i € I} is semi-compact. Let {an}n>1 C [6,1 — 6] for some 6 € (0,1). From
arbitrary xo € K, define the sequence {x,} by the implicit iteration process (3).
Then {x,} converges strongly to a common fized point of the mappings {T; : i € I'}.

In [6], Oslilike proved the following theorem

Theorem 1.4. Let E be a real Banach space and K be a nonempty closed convex
subset of E. Let {T; : i € I} be N strictly pseudocontractive self-mappings of K with
N

F=)F(T;) ¢ 0. Let {a,}32 be a real sequence satisfying the conditions:

=1

i) 0<a,<1,
[e o]

(i) > (1—an) =00,
n=1

(i) Y (1 - an)? < co.
n=1

From arbitrary g € K, define the sequence {z,} by the implicit iteration process (3).
Then {x,} converges strongly to a common fized point of the mappmgs {T;:1€l}
if and only if hm d(zn, F)=0.

Inspired and motivated by the above facts, we suggest the following implicit

iteration process with errors and define the sequence {z,} as follows
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4) Zn = Qp&n-1 + bnTnZn + Coln, forall n 2> 1,

where T, = T, (mod N)> {@n}, {bn}, {cn} are sequences in [0, 1] such that an + ba +
¢n = 1 for each n € N and {u,} is a bounded sequence in K.

Remark 1.1. In (4), if we take 0 < a,, = 1 — by < 1, then it takes the form

(5) Ty = anTn—1 + (1 — an)Tnzn + crn.

By putting ¢, = 0 in (5), it reduces to (3). So there is no need to discuss the implicit
iteration processes (3) and (4) separately.

Remark 1.2. Observe that if T : K — K is a continuous strongly pseudocontractive
mapping, then for every fixed u € K and t € (0,1), the mapping S; : K — K defined
for all x € K by
Sz =tu+ (1 -t)Tz,

satisfies

(Sex — Sy, j(z —y)) < (1 —t)|z —yl|?, forall z,y€ K.
It follows that S; is a strongly pseudocontractive mapping. Since S is also contin-
uous, St has a unique fixed point z; in K by [3, Corollary 2], i.e.,

ze =tu+ (1~ t)Tzy.
Thus the implicit iteration process (3) is defined in K for the continuous strongly

pseudocontractive self-mappings of a nonempty convex subset K of a Banach space
provided that o, € (0,1) for all n > 1.

The purpose of this paper is to study the strong convergence of implicit iteration
process (4) to a common fixed point for a finite family of continuous strongly pseu-
docontractive mappings in real Banach spaces. The results presented in this paper

extend and improve the corresponding results of References [2, 6, 11-12].

2. MAIN RESULTS
In this section we study the convergence of Algorithm (4). For this purpose, we
need the following results.

Lemma 2.1 ([10]). Let J : E — 2F" be the normalized duality mapping. Then for
any z, y € E, we have

(6) lz +yl? < llel® + 20y, j(z +y)), for all j(z+y) € J(z+y).

The following lemma is proved in [8].
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Lemma 2.2. If there exists a positive integer N such that for alln > N, n € N

Pnt1 < (1 - an)pn + bn)
then
lim p, =0,

n—o0

o0
where an € [0,1), > an =00, and b, = o(aw,).
n=0

Theorem 2.1. Let {T1,T5,--- , Ty} : K — K be N continuous strongly pseu-
N
docontractive mappings with F = () F(T;) # 0. From arbitrary zo € K, de-
i=1
o]
fine the sequence {z,} by the implicit iteration process (4) satisfying > b, = oo,

n=1

lim b, = 0 and ¢, = o(b,). Then {z,} converges strongly to a common fized point
n—o0

Of {T17T2a' ot ’TN}
Proof. Since each T; is strongly pseudocontractive, then there exists k; € (0,1) such
that

(Tiw — Ty, j(z —y) < A= k)o—yll?, i=1,2,-,N.

Let k = min {k;}. Then
1<i<N

(7 (Tiw - Ty, j(z —y)) < 1 - k)l -yl i=12-- N

We know that the mappings {T3,T5, -+ ,Tny} have a common fixed point in k,
say w, then the fixed point set F = (1% F(T;) # 0 is nonempty. We will show that
w is the unique fixed point of each Til.zéuppose there exists wy € F. Then from (7),

lw — w1 ]? = (w ~ wy, j(w = w1)) = (Tw - Twy, j(w — w)) < (1= k)|jw - w %

Since k € (0,1), it follows that ||w — w1||? < 0, which implies the uniqueness.

Set M := sup ||un, — w||. We will prove that {z,} is bounded. Indeed, from (4)
we have "

l2n — w]®
= (@n — w,j(zn — w))

= (anmn—l + onTnZn + Cptn — w, j(zn — w))

a C. .
<(1 - bn) (T’%xn—l + 1 nb un) + by Tnzn — wy](zn - ’Ll))>
n — Un

If
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= (= 80) (12 oot = 0) + 12— ) + (T — w0 = 0))

- -0 (1 = ), (an —w) ) )

+ by (Thzn — w,](mn - w))

(.’En 1— w) +

a c
< (1= bn) | == (@01 = W) + = (un — )| 20 — wl| + ba (1 = k) flen — wl?,
1- b, 1- b,
implies
a
Hxn - w” < (1 - bn) _‘L(zn—l - w) + (un — w) + (1 - k)bn”xn - w”,
\ — by, 1-b,
and consequently, we obtain
(1-5,) an,
— < —
In,
< ||
._“l_bn(xn 1= H
Gn
< =2y — ] + Jmn~wn
an
< 7 _
< 1Tp, Ion-1 “ b,
< max{||zn_1 — wl, M}.

Now the induction yields
|zn — w|| < max{|jzo — w|, M}, n>1.

So, from the above discussion, we can conclude that the sequence {z,} is bounded.
Set M; := sup ||zn — w|| + M. From Lemma 2.1 and (4), we have
n>1

ll2n — w|®
= ||lanZn-1 + b TnZn + crttn, — wi|?
= ||an(@n_1 — W) + bp(Tnzn — w) + caltn — w)|?
< apllen-1 = ]| + 20bn (Tnzn — w) + ca(un — w), (@ — w))
< (1= b)Yzt — wl|? + 2b, (Tytn — w, §(zn — w)) + 20 (Un — w, j(2Tn — w))
< (1= bo)?|®ne1 — w)? + 2b,(1 — K)||zp — w|? + 2MZc,,
implies

® o - w2 < —L )

N\ ) _ 2 2 Cn
T= 201 kb, Nan—r — @l + 2Mr

21— k)bn’
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Let

An = (1—1b,)%,
B, =1-2(1—k)by,

and consider

L An (1-b,)?
©) ﬂ"_l_B_n_1—1—2(1—k)bn

_ ba(2k—by) B

= T o1 R 20— k)b, > bp(2k — bp).

k
By lim b, = 0, there exists ng € N such that ¥Yn > ng, b, < > which implies that

n—00

1-2(1—- k)b, >1— k(1 - k) and consequently from (9), we get 8, > kb,. Thus
from (8), we obtain

(10) lzn — wll < (1 = kbn) |21 —w]| +2M7 1= Cn:

1
k(1 k)

o0
With the help of Lemma 2.2 and using the fact that Z b, = oo and ¢, = o(by,), we

n=1
obtain
lim ||z, — w| =0.
n—o0
Consequently z,, — w € F and this completes the proof. O

Corollary 2.1. Let {T},T2,--- ,In} : K — K be N continuous strongly pseudo-
N
contractive mappings with F = (| F(T;) # 0. From arbitrary zo € K, define the

i=1

oo
sequence {zn} by the implicit iteration process (3) satisfying Z(l — ap) = 00,

n=1
lim (1 — an) = 0. Then {z,} converges strongly to a common fized point of
n—00
{TI)T2) e 7TN}

Remark 2.1. Theorem 2.1 and Corollary 2.1 extend and improve Theorems 1.1-1.4
in the following directions: '

¢ We do not need the assumption semi-compact as in Theorem 1.1 and The-
orem 1.3;
¢ We do not need the “condition A” as in Theorem 1.2;

e We do not need the assumption lim as in Theorem 1.4.
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