Browse > Article
http://dx.doi.org/10.4014/jmb.0810.595

Diversity of Bacillus thuringiensis Strains Isolated from Citrus Orchards in Spain and Evaluation of Their Insecticidal Activity Against Ceratitis capitata  

J.C., Vidal-Quist (Centro de Proteccion Vegetal y Biotecnologia, IVIA, Ctra. Moncada-Naquera km)
Castanera, P. (Departamento Biologia de Plantas, CIB, CSIC, C/ Ramiro de Maeztu)
Gonzalez-Cabrera, J. (Centro de Proteccion Vegetal y Biotecnologia, IVIA, Ctra. Moncada-Naquera km)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.8, 2009 , pp. 749-759 More about this Journal
Abstract
A survey of Bacillus thuringiensis (Berliner) strains isolated from Spanish citrus orchards has been performed, and the strains were tested for insecticidal activity against the Mediterranean fruit fly Ceratitis capitata (Wiedemann), a key citrus pest in Spain. From a total of 150 environmental samples, 376 isolates were selected, recording a total B. thuringiensis index of 0.52. The collection was characterized by means of phase-contrast microscopy, SDS-PAGE, and PCR analysis with primer pairs detecting toxin genes cry1, cry2, cry3, cry4, cry5, cry7, cry8, cry9, cry10, cry11, cry12, cry14, cry17, cry19, cry21, cry27, cry39, cry44, cyt1, and cyt2. Diverse crystal inclusion morphologies were identified: bipyramidal (45%), round (40%), adhered to the spore (7%), small (5%), and irregular (3%). SDS-PAGE of spore-crystal preparations revealed 39 different electrophoresis patterns. All primer pairs used in PCR tests gave positive amplifications in strains of our collection, except for primers for detection of cry3, cry19, cry39, or cry44 genes. Strains containing cry1, cry2, cry4, and cry27 genes were the most abundant (48.7%, 46%, 11.2%, and 8.2% of the strains, respectively). Ten different genetic profiles were found, although a total of 109 strains did not amplify with the set of primers used. Screening for toxicity against C. capitata adults was performed using both spore-crystal and soluble fractions. Mortality levels were less than 30%. We have developed a large and diverse B. thuringiensis strain collection with huge potential to control several agricultural pests; however, further research is needed to find out Bt strains active against C. capitata.
Keywords
Bacillus thuringiensis; Mediterranean fruit fly; cry; cyt; biological control; PCR; SDS-PAGE; phase-contrast microscopy; bioassays;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arrieta, G., A. Hern$\acute{a}$ndez, and A. M. Espinoza. 2004. Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei Ferrari. Rev. Biol. Trop. 52: 757-764   ScienceOn
2 Barloy, F., M. M. Lecadet, and A. Delecluse. 1998. Distribution of clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Curr. Microbiol. 36: 232-237   DOI   ScienceOn
3 Ben Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, et al. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890   PUBMED   ScienceOn
4 Guerchicoff, A., A. Delecluse, and C. P. Rubinstein. 2001. The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl. Environ. Microbiol. 67: 1090-1096   DOI   ScienceOn
5 Hernandez, C. S., R. Andrew, Y. Bel, and J. Ferre. 2005. Isolation and toxicity of Bacillus thuringiensis from potatogrowing areas in Bolivia. J. Invertebr. Pathol. 88: 8-16   DOI   ScienceOn
6 Ito, T., H. Bando, and S. Asano. 2006. Activation process of the mosquitocidal delta-endotoxin Cry39A produced by Bacillus thuringiensis subsp. aizawai BUN1-14 and binding property to Anopheles stephensi BBMV. J. Invertebr. Pathol. 93: 29-35   DOI   ScienceOn
7 Jara, S., P. Maduell, and S. Orduz. 2006. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J. Appl. Microbiol. 101: 117-124   DOI   ScienceOn
8 Porcar, M. and V. M. Juarez-Perez. 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev. 26: 419-432   DOI   ScienceOn
9 Quesada-Moraga, E., E. Garc$\acute{i}$a-Tovar, P. Valverde-Garc$\acute{i}$a, and C. Santiago-$\acute{A}$lvarez. 2004. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Microbiol. Res. 159: 59-71   DOI   ScienceOn
10 Ru$\acute{i}$z de Escudero, I., I. Ib$\acute{a}$$\tilde{n}$ez, M. A. Padilla, A. Carnero, and P. Caballero. 2004. Aislamiento y caracterizaci$\acute{o}$n de nuevas cepas de Bacillus thuringiensis procedentes de muestras de tierra de Canarias. Bol. San. Veg. Plagas 30: 703-712
11 Ito, T., T. Ikeya, K. Sahara, H. Bando, and S. Asano. 2006. Cloning and expression of two crystal protein genes, cry30Ba1 and cry44Aa1, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288. Appl. Environ. Microbiol. 72: 5673-5676   DOI   ScienceOn
12 Chak, K. F., D. C. Chao, M. Y. Tseng, S. S. Kao, S. J. Tuan, and T. Y. Feng. 1994. Determination and distribution of crytype genes of Bacillus thuringiensis isolates from Taiwan. Appl. Environ. Microbiol. 60: 2415-2420   PUBMED   ScienceOn
13 Iriarte, J., Y. Bel, M. D. Ferrandis, R. Andrew, J. Murillo, J. Ferr$\acute{e}$, and P. Caballero. 1998. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Syst. Appl. Microbiol. 21: 97-106   DOI   PUBMED   ScienceOn
14 Reddy, Y. C. and G. Venkateswerlu. 2002. Intracellular proteases of Bacillus thuringiensis subsp. kurstaki and a protease-deficient mutant Btk-q. Curr. Microbiol. 45: 405-409   DOI   ScienceOn
15 Alberola, T. M., S. Aptosoglou, M. Arsenakis, Y. Bel, G. Delrio, D. J. Ellar, et al. 1999. Insecticidal activity of strains of Bacillus thuringiensis on larvae and adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). J. Invertebr. Pathol. 74: 127-136   DOI   ScienceOn
16 Hwang, S. H., H. Saitoh, E. Mizuki, K. Higuchi, and M. Ohba. 1998. A novel class of mosquitocidal delta-endotoxin, Cry19B, encoded by a Bacillus thuringiensis serovar higo gene. Syst. Appl. Microbiol. 21: 179-184   DOI   PUBMED   ScienceOn
17 Mohan, M. and G. T. Gujar. 2003. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae: Lepidoptera). J. Invertebr. Pathol. 82: 1-11   DOI   ScienceOn
18 Primo-Millo, J., F. Alfaro, and R. Argiles. 2003. Plan de actuacion contra la mosca de las frutas (Ceratitis capitata) en la Comunidad Valenciana. Phytoma Espana 153: 127-130
19 Karamanlidou, G., A. F. Lambropoulos, S. I. Koliais, T. Manousis, D. Ellar, and C. Kastritsis. 1991. Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Appl. Environ. Microbiol. 57: 2277-2282   PUBMED   ScienceOn
20 Guerchicoff, A., R. A. Ugalde, and C. P. Rubinstein. 1997. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63: 2716-2721   PUBMED   ScienceOn
21 Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent, and I. Thiery. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672   DOI   ScienceOn
22 Magana, C., P. Hernandez-Crespo, A. Brun-Barale, F. Couso- Ferrer, J. M. Bride, P. Castanera, R. Feyereisen, and F. Ortego. 2008. Mechanisms of esistance to malathion in the medfly Ceratitis capitata. Insect Biochem. Mol. Biol. 38: 756-762   DOI   ScienceOn
23 Saitoh, H., K. Higuchi, E. Mizuki, S. H. Hwang, and M. Ohba. 1998. Characterization of mosquito larvicidal parasporal inclusions of a Bacillus thuringiensis serovar higo strain. J. Appl. Microbiol. 84: 883-888   DOI   PUBMED   ScienceOn
24 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806   ScienceOn
25 Itoua-Apoyolo, C., L. Drif, J. M. Vassal, H. DeBarjac, J. P. Bossy, F. Leclant, and R. Frutos. 1995. Isolation of multiple subspecies of Bacillus thuringiensis from a population of the European sunflower moth, Homoeosoma nebulella. Appl.Environ. Microbiol. 61: 4343-4347   PUBMED   ScienceOn
26 Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685   DOI   PUBMED   ScienceOn
27 de Barros Moreira, B. H. and M. H. Silva-Filha. 2007. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol. Lett. 266: 163-169   DOI   ScienceOn
28 Hansen, B. M., P. H. Damgaard, J. Eilenberg, and J. C. Pedersen. 1998. Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invertebr. Pathol. 71: 106-114   DOI   ScienceOn
29 Berry, C., S. O'Neil, E. Ben Dov, A. F. Jones, L. Murphy, M. A. Quail, et al. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082-5095   DOI   ScienceOn
30 Toledo, J., P. Liedo, T. Williams, and J. Ibarra. 1999. Toxicity of Bacillus thuringiensis $\beta$-exotoxin to three species of fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 92: 1052-1056   DOI   PUBMED   ScienceOn
31 IPCS-WHO. 2000. Environmental Health Criteria 217: Bacillus thuringiensis
32 Iriarte, J., M. Porcar, M. Lecadet, and P. Caballero. 2000. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr. Microbiol. 40: 402- 408   DOI   ScienceOn
33 Ibarra, J. E., M. C. Del Rinc$\acute{o}$n, S. Orduz, D. Noriega, G. Benintende, R. Monnerat, et al. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274   DOI   ScienceOn
34 Stewart, G. S. A. B., K. Johnstone, E. Hagelberg, and D. J. Ellar. 1981. Commitment of bacterial spores to germinate. Biochem. J. 198: 101-106   DOI
35 Charles, J. F. and C. Nielsen-LeRoux. 2000. Mosquitocidal bacterial toxins: Diversity, mode of action and resistance phenomena. Mem. Inst. Oswaldo Cruz 95: 201-206   DOI
36 Gingrich, R. E. 1987. Demonstration of Bacillus thuringiensis as a potential control agent for the adult Mediterranean fruit fly, Ceratitis capitata (Wied.). J. Appl. Entomol. 104: 378-385   DOI
37 Casta$\tilde{n}$era, P. 2003. Control integrado de la mosca mediterránea de la fruta, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) en cítricos. Phytoma Espa$\tilde{n}$a 153: 131-133
38 Bravo, A., S. Sarabia, L. LOpez, H. Ontiveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalobos, G. Pena, M. E. Nunez- Valdez, M. Soberon, and R. Quintero. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64: 4965-4972   PUBMED   ScienceOn
39 Yamagiwa, M., R. Ogawa, K. Yasuda, H. Natsuyama, K. Sen, and H. Sakai. 2002. Active form of dipteran-specific insecticidal protein CryllA produced by Bacillus thuringiensis subsp. israelensis. Biosci. Biotechnol. Biochem. 66: 516-522   DOI   ScienceOn
40 Hodgman, T. C., Y. Ziniu, S. Ming, T. Sawyer, C. M. Nicholls, and D. J. Ellar. 1993. Characterization of a Bacillus thuringiensis strain which is toxic to the housefly Musca domestica. FEMS Microbiol. Lett. 114: 17-22   DOI   ScienceOn
41 Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvacidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 37: 355-358
42 Ber$\acute{o}$n, C. M. and G. L. Salerno. 2006. Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control. Biocontrol 51: 779-794   DOI   ScienceOn
43 Magana, C., P. Hernandez-Crespo, F. Ortego, and P. Castanera. 2007. Resistance to Malathion in field populations of Ceratitis capitata. J. Econ. Entomol. 100: 1836-1843   DOI   ScienceOn
44 Saitoh, H., S. H. Hwang, Y. S. Park, K. Higuchi, E. Mizuki, and M. Ohba. 2000. Cloning and characterization of a Bacillus thuringiensis serovar higo gene encoding a novel class of the delta-endotoxin protein, Cry27A, specifically active on the Anopheles mosquito. Syst. Appl. Microbiol. 23: 25-30   DOI   PUBMED   ScienceOn
45 Bel, Y., F. Granero, T. M. Alberola, M. J. Mart$\acute{i}$nez-Sebasti$\acute{a}$n, and J. Ferr$\acute{e}$. 1997. Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Syst. Appl. Microbiol. 20: 652-658   ScienceOn
46 Robacker, D. C., A. J. Mart$\acute{i}$nez, J. A. García, M. D$\acute{i}$az, and C. Romero. 1996. Toxicity of Bacillus thuringiensis to Mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 89: 104-110   DOI   ScienceOn