DOI QR코드

DOI QR Code

Fungal Diversity in Composting Process of Pig Manure and Mushroom Cultural Waste Based on Partial Sequence of Large Subunit rRNA

  • Cho, Kye-Man (Research Institute of Agricultural Science, Sunchon National University) ;
  • Kwon, Eun-Ju (Research Institute of Agricultural Science, Sunchon National University) ;
  • Kim, Sung-Kyum (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kambiranda, Devaiah M (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Math, Reukaradhya K (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Lee, Young-Han (Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Kim, Jung-Ho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Yun, Han-Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
  • Published : 2009.08.31

Abstract

Fungal diversity during composting was investigated by culture-independent rDNA sequence analysis. Composting was carried out with pig manure and mushroom cultural waste using a field-scale composter (Hazaka system), and samples were collected at various stages. Based on partial sequence analysis of large subunit (LSU) ribosomal RNA (rRNA) and sequence identity values, a total of 12 different fungal species were found at six sampling sites; Geotrichum sp., Debaryomyces hansenii, Monographella nivalis, Acremonium strictum, Acremonium alternatum, Cladosporium sphaerospermum, Myriangium durosai, Pleurotus eryngii, Malassezia globosa, Malassezia restricta, Rhodotorula glutinis, and Fusarium sporotrichioides. Geotrichum sp. of the class Saccharomycetes was the most predominant fungal species throughout the composting process (185 out of a total of 236 identified clones, or 78.4%), followed by Acremonium strictum (7.6%), Monographella nivalis (5.1%), and Pleurotus eryngii (3.8%). The prevalence of Geotrichum sp. was the lowest (61.1%) at the beginning of composting, and then gradually increased to 92.5% after 10 days of composting.

Keywords

References

  1. Anastasi, A., G. C. Varese, S. Voyron, S. Scannerini, and M. V. Filipello. 2004. Characterization of fungal biodiversity in compost and vermicompost. Compost Sci. Util. 12: 185-191 https://doi.org/10.1080/1065657X.2004.10702179
  2. Anderson, I. C., C. D. Campbell, and J. I. Prosser. 2003. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ. Microbiol. 5: 36-46 https://doi.org/10.1046/j.1462-2920.2003.00383.x
  3. Bailey, K. L. and L. G. Lazarovits. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 72: 169-180 https://doi.org/10.1016/S0167-1987(03)00086-2
  4. Barker, A. V. and G. M. Bryson. 2002. Bioremediation of heavy metals and organic toxicants by composting. Sci. World J. 12: 407-420
  5. Bridge, P. D., P. J. Roberts, B. M. Spooner, and G. Panchal. 2003. On the unreliability of published DNA sequences. New Phytol. 160: 43-48 https://doi.org/10.1046/j.1469-8137.2003.00861.x
  6. Clark, C. S., C. O. Buckingham, D. H. Bone, and R. H. Clark. 1977. Laboratory scale composting: Techniques. J. Environ. Eng. Div. 103: 47-59
  7. Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35: 207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  8. Esteve-Zarzoso, B., C. Belloch, F. Uruburu, and A. Querol. 1999. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 49: 329-337 https://doi.org/10.1099/00207713-49-1-329
  9. Giannoutsou, E. P., C. Meintanis, and A. D. Karagouni. 2004. Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. Bioresour. Technol. 93: 301-306 https://doi.org/10.1016/j.biortech.2003.10.023
  10. Guillamon, J. M., J. Sabate, E. Barrio, J. Cano, and A. Querol. 1998. Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387-392 https://doi.org/10.1007/s002030050587
  11. Hansgate, A. M., P. D. Schloss, A. G. Hay, and L. P. Walker. 2005. Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiol. Ecol. 51: 209-214 https://doi.org/10.1016/j.femsec.2004.08.009
  12. Haug, R. T. 1993. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, Florida, U.S.A
  13. Higgins, C. W. and L. P. Walker. 2001. Validation of a new model for aerobic organic solids decomposition: Simulations with substrate specific kinetics. Process Biochem. 36: 875-884 https://doi.org/10.1016/S0032-9592(00)00285-5
  14. Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89: 768-777 https://doi.org/10.1046/j.1365-2672.2000.01177.x
  15. Kim, M.-C., J.-H. Ahn, H.-C. Shin, T. Kim, T.-H. Ryu, D.-H. Kim, H.-G. Song, G. H. Lee, and J.-O. Ka. 2008. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. J. Microbiol. Biotechnol. 18: 207-218
  16. Kurtzman, C. P. and C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331-373 https://doi.org/10.1023/A:1001761008817
  17. Liew, P. W. Y. and B. C. Jong. 2008. Application of rDNA-PCR amplification and DGGE fingerprinting for detection of microbial diversity in a Malaysian crude oil. J. Microbiol. Biotechnol. 18: 815-820
  18. Malik, M., J. Kain, C. Pettigrew, and A. Ogram. 1994. Purification and molecular analysis of microbial DNA from compost. J. Microbiol. Methods 20: 183-196 https://doi.org/10.1016/0167-7012(94)90003-5
  19. McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20-25 https://doi.org/10.1093/nar/gkh435
  20. Nakasaki, K., S. Hiraoka, and H. Nakada. 1998. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 64: 4015-4020
  21. Ntougias, S., G. I. Zervakis, N. Kavroulakis, C. Ehaliotis, and K. K. Papdopoulou. 2004. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Syst. Appl. Microbiol. 27: 746-754 https://doi.org/10.1078/0723202042369857
  22. Pedro, M. S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field scale composter. J. Biosci. Bioeng. 91: 159-165 https://doi.org/10.1016/S1389-1723(01)80059-1
  23. Peters, S., S. Koschinsky, F. Schwieger, and C. C. Tebbe. 2000. Succession of microbial communities during hot composting as detected by PCR-single- trand-conformation polymorphism based genetic profiles of small-subunit rRNA enes. Appl. Environ. Microbiol. 66: 930-936 https://doi.org/10.1128/AEM.66.3.930-936.2000
  24. Ranjard, L., F. Poly, J. C. Lata, C. Mougel, J. Thioulouse, and S. Nazaret. 2001. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: Biological and methodological variability. Appl. Environ. Microbiol. 67: 4479-4487 https://doi.org/10.1128/AEM.67.10.4479-4487.2001
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  26. Schloss, P. D., A. G. Hay, D. B. Wilson, and L. P. Walker. 2003. Molecular assessment of inoculum efficacy and process reproducibility in composting using ARISA. Trans. ASAE 46: 919-927
  27. Schloss, P. D., A. G. Hay, D. B. Wilson, and L. P. Walker. 2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 46: 1-9 https://doi.org/10.1016/S0168-6496(03)00153-3
  28. Schulze, K. L. 1962. Continuous thermophilic composting. Appl. Microbiol. 10: 108-122
  29. Singh, A., K. Billingsley, and O. Ward. 2006. Composting: A potentially safe process for disposal of genetically modified organisms. Crit. Rev. Biotechnol. 26: 1-16 https://doi.org/10.1080/07388550500508644
  30. Smit, E., P. Leeflang, B. Glandorf, J. Dirk van Elsas, and K. Wernars. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65: 2614-2621
  31. Strom, P. F. 1985. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl. Environ. Microbiol. 50: 899-905
  32. Strom, P. F. 1985. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol. 50: 906- 913
  33. Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto, and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101: 42-50 https://doi.org/10.1263/jbb.101.42
  34. Tiquia, S. M. and N. F. Y. Tam. 2000. Co-composting of spent pig litter and sludge with forced aeration. Bioresour. Technol. 72: 1-7 https://doi.org/10.1016/S0960-8524(99)90092-5
  35. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  36. Unmar, G. and R. Mohee. 2008. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality. Bioresour. Technol. 99: 6738- 6744 https://doi.org/10.1016/j.biortech.2008.01.016
  37. Van der Auwera, G., S. Chapelle, and R. De Wachter. 1994. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338: 133-136 https://doi.org/10.1016/0014-5793(94)80350-1
  38. Walker, L. P., T. D. Nock, J. M. Gossett, and J. S. VanderGheynst. 1999. Managing moisture limitations on microbial activity in high-solids aerobic decomposition: Pilot-scale experimentation. Process Biochem. 34: 601-612 https://doi.org/10.1016/S0032-9592(98)00122-8
  39. Wong, J. W., K. F. Mak, N. W. Chan, A. Lam, M. Fang, L. X. Zhou, Q. T. Wu, and X. D. Liao. 2001. Co-composting of soybean residues and leaves in Hong Kong. Bioresour. Technol. 76: 99-106 https://doi.org/10.1016/S0960-8524(00)00103-6

Cited by

  1. Characterization of Xyn10J, a Novel Family 10 Xylanase from a Compost Metagenomic Library vol.166, pp.5, 2009, https://doi.org/10.1007/s12010-011-9520-8
  2. Diversity Measures in Environmental Sequences Are Highly Dependent on Alignment Quality—Data from ITS and New LSU Primers Targeting Basidiomycetes vol.7, pp.2, 2009, https://doi.org/10.1371/journal.pone.0032139
  3. Microbial Diversity in the Enrichment Cultures from the Fermented Beverage of Plant Extract Using Ribosomal RNA Sequence Analysis vol.50, pp.4, 2009, https://doi.org/10.7845/kjm.2014.4034
  4. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions vol.109, pp.None, 2009, https://doi.org/10.1016/j.dsr.2016.01.001
  5. Effect of Substrate on Identification of Microbial Communities in Poultry Carcass Composting and Microorganisms Associated with Poultry Carcass Decomposition vol.64, pp.36, 2009, https://doi.org/10.1021/acs.jafc.6b02442
  6. Characterization of Three Extracellular β-Glucosidases Produced by a Fungal Isolate Aspergillus sp. YDJ14 and Their Hydrolyzing Activity for a Flavone Glycoside vol.28, pp.5, 2009, https://doi.org/10.4014/jmb.1802.02051
  7. Compost as an untapped niche for thermotolerant yeasts capable of high‐temperature ethanol production vol.74, pp.1, 2009, https://doi.org/10.1111/lam.13593