DOI QR코드

DOI QR Code

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

  • Bijmans, Martijn F. M. (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Dopson, Mark (Department of Molecular Biology, Umea University) ;
  • Peeters, Tom W. T. (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Lens, Piet N. L. (Sub Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Buisman, Cees J. N. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
  • Published : 2009.07.31

Abstract

High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.

Keywords

References

  1. Amend, J. P. and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243 https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
  2. Bijmans, M. F. M., T. W. T. Peeters, P. N. L. Lens, and C. J. N. Buisman. 2008. High rate sulfate reduction at pH 6 in a pHauxostat submerged membrane bioreactor fed with formate. Water Res. 42: 2439-2448 https://doi.org/10.1016/j.watres.2008.01.025
  3. Bond, P. L., S. P. Smriga, and J. F. Banfield. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66: 3842-3849 https://doi.org/10.1128/AEM.66.9.3842-3849.2000
  4. Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735-1741
  5. Buisman, C. J. N. and G. Lettinga. 1990. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Res. 24: 313-319 https://doi.org/10.1016/0043-1354(90)90006-R
  6. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington
  7. Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nuclear Acids Res. 31: 442-443 https://doi.org/10.1093/nar/gkg039
  8. Dopson, M. and E. B. Lindstr$\ddot{o}$m. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microbial Ecol. 48: 19-28 https://doi.org/10.1007/s00248-003-2028-1
  9. Elliott, P., S. Ragusa, and D. Catcheside. 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res. 32: 3724-3730 https://doi.org/10.1016/S0043-1354(98)00144-4
  10. Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113 https://doi.org/10.1016/j.hydromet.2006.03.017
  11. Janssen, A. J. H., G. Lettinga, and A. de Keizer. 1999. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surface Physicochem. Eng. Aspect 151: 389-397 https://doi.org/10.1016/S0927-7757(98)00507-X
  12. Johnson, D. B. and K. B. Hallberg. 2003. The microbiology of acidic mine waters. Res. Microbiol. 154: 466-473 https://doi.org/10.1016/S0923-2508(03)00114-1
  13. Jong, T. and D. L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571 https://doi.org/10.1016/j.watres.2006.05.001
  14. Kaksonen, A. H., J. J. Plumb, W. J. Robertson, P. D. Franzmann, J. A. E. Gibson, and J. A. Puhakka. 2004. Culturable diversity and community fatty acid profiling of sulfate-reducing fluidizedbed reactors treating acidic, metal-containing wastewater. Geomicrob. J. 21: 469-480 https://doi.org/10.1080/01490450490505455
  15. Kaksonen, A. H., J. J. Plumb, W. J. Robertson, M. Riekkola-Vanhanen, P. D. Franzmann, and J. A. Puhakka. 2006. The performance, kinetics and microbiology of sulfidogenic fluidizedbed treatment of acidic metal- and sulfate-containing wastewater. Hydrometallurgy 83: 204-213 https://doi.org/10.1016/j.hydromet.2006.03.025
  16. Kawazuishi, K. and J. M. Prausnitz. 1987. Correlation of vaporliquid equilibria for the system ammonia-carbon dioxide-water. Ind. Eng. Chem. Res. 26: 1482-1485 https://doi.org/10.1021/ie00067a036
  17. Kimura, S., K. Hallberg, and D. Johnson. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 159-167
  18. Lens, P., M. V. G. Vallero, G. Esposito, and M. Zandvoort. 2002. Perspectives of sulfate reducing bioreactors in enviromental biotechnology. Rev. Environ. Sci. Biotechnol. 1: 311-325 https://doi.org/10.1023/A:1023207921156
  19. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acids Res. 32: 1363-1371 https://doi.org/10.1093/nar/gkh293
  20. Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20-78 https://doi.org/10.1016/0076-6879(83)01005-8
  21. Morales, T. A., M. Dopson, R. Athar, and R. B. Herbert. 2005. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 90: 543-551 https://doi.org/10.1002/bit.20421
  22. Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
  23. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141 https://doi.org/10.1023/A:1000669317571
  24. Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172 https://doi.org/10.1007/BF02529967
  25. Paulo, P. L., R. Kleerebezem, G. Lettinga, and P. N. L. Lens. 2005. Cultivation of high-rate sulfate reducing sludge by pHbased electron donor dosage. J. Biotechnol. 118: 107-116 https://doi.org/10.1016/j.jbiotec.2005.03.007
  26. Peters, V., P. H. Janssen, and R. Conrad. 1999. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 38: 285-289 https://doi.org/10.1007/PL00006803
  27. Raskin, L., R. I. Amann, L. K. Poulsen, B. E. Rittmann, and D. A. Stahl. 1995. Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms. Water Sci. Tech. 31: 261-272
  28. Roest, K., H. G. H. J. Heilig, H. Smidt, W. M. de Vos, A. J. M. Stams, and A. D. L. Akkermans. 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28: 175-185
  29. Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55${^{\circ}C}$) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 64: 421-428 https://doi.org/10.1007/s00253-003-1430-4
  30. Stahl, D. A. and R. I. Amann. 1991. Development and application of nucleic acid probes in bacterial systematics, pp. 205-248. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester
  31. Stams, A., J. Van Dijk, C. Dijkema, and C. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114-1119
  32. Tabak, H. H., R. Scharp, J. Burckle, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14: 423-436 https://doi.org/10.1023/A:1027332902740
  33. Thiele, J. H. and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54: 20-29
  34. Van Houten, B. H. G. W. 2006. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewater. Wageningen University
  35. Van Houten, R. T., S. J. W. H. O. Elferink, S. E. van Hamel, L. W. H. Pol, and G. Lettinga. 1995. Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Bioresour. Technol. 54: 73-79 https://doi.org/10.1016/0960-8524(95)00117-4
  36. Van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594 https://doi.org/10.1002/bit.260440505
  37. Van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560 https://doi.org/10.1016/j.watres.2005.12.004
  38. Veeken, A. H. M., L. Akoto, L. W. Hulshoff Pol, and J. Weijma. 2003. Control of the sulfide ($S^{2-}$) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 37: 3709-3717 https://doi.org/10.1016/S0043-1354(03)00262-8
  39. Weijma, J., C. F. M. Copini, C. J. N. Buisman, and C. E. Schultz. 2002. Biological recovery of metals, sulfur and water in the mining and metallurgical industy, pp. 605-625. In P. N. L. Lens and L. Hulshoff Pol (eds.). Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing
  40. Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 67: 354-363 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X

Cited by

  1. Long term performance of an AMD treatment bioreactor using chemolithoautotrophic sulfate reduction and ferrous iron precipitation under in situ groundwater conditions vol.104, pp.None, 2012, https://doi.org/10.1016/j.biortech.2011.11.022
  2. Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH-gradient bioreactor vol.110, pp.12, 2009, https://doi.org/10.1007/s10482-017-0917-4
  3. Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage From the Malanjkhand Copper Project, India vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.02882
  4. Dynamic Experimental Study on Treatment of Acid Mine Drainage by Bacteria Supported in Natural Minerals vol.13, pp.2, 2009, https://doi.org/10.3390/en13020439
  5. Study on the Effectiveness of Sulfate-Reducing Bacteria Combined with Coal Gangue in Repairing Acid Mine Drainage Containing Fe and Mn vol.13, pp.4, 2020, https://doi.org/10.3390/en13040995
  6. Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil vol.55, pp.4, 2009, https://doi.org/10.1080/10934529.2019.1709362
  7. Role of cost-effective organic carbon substrates in bioremediation of acid mine drainage-impacted soil of Malanjkhand Copper Project, India: a biostimulant for autochthonous microbial populations vol.27, pp.22, 2009, https://doi.org/10.1007/s11356-019-06293-6
  8. Optimising Brewery-Wastewater-Supported Acid Mine Drainage Treatment vis-à-vis Response Surface Methodology and Artificial Neural Network vol.8, pp.11, 2009, https://doi.org/10.3390/pr8111485
  9. Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion vol.11, pp.5, 2009, https://doi.org/10.3390/app11052201