References
- Amend, J. P. and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243 https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
- Bijmans, M. F. M., T. W. T. Peeters, P. N. L. Lens, and C. J. N. Buisman. 2008. High rate sulfate reduction at pH 6 in a pHauxostat submerged membrane bioreactor fed with formate. Water Res. 42: 2439-2448 https://doi.org/10.1016/j.watres.2008.01.025
- Bond, P. L., S. P. Smriga, and J. F. Banfield. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66: 3842-3849 https://doi.org/10.1128/AEM.66.9.3842-3849.2000
- Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735-1741
- Buisman, C. J. N. and G. Lettinga. 1990. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Res. 24: 313-319 https://doi.org/10.1016/0043-1354(90)90006-R
- Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington
- Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nuclear Acids Res. 31: 442-443 https://doi.org/10.1093/nar/gkg039
-
Dopson, M. and E. B. Lindstr
$\ddot{o}$ m. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microbial Ecol. 48: 19-28 https://doi.org/10.1007/s00248-003-2028-1 - Elliott, P., S. Ragusa, and D. Catcheside. 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res. 32: 3724-3730 https://doi.org/10.1016/S0043-1354(98)00144-4
- Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113 https://doi.org/10.1016/j.hydromet.2006.03.017
- Janssen, A. J. H., G. Lettinga, and A. de Keizer. 1999. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surface Physicochem. Eng. Aspect 151: 389-397 https://doi.org/10.1016/S0927-7757(98)00507-X
- Johnson, D. B. and K. B. Hallberg. 2003. The microbiology of acidic mine waters. Res. Microbiol. 154: 466-473 https://doi.org/10.1016/S0923-2508(03)00114-1
- Jong, T. and D. L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571 https://doi.org/10.1016/j.watres.2006.05.001
- Kaksonen, A. H., J. J. Plumb, W. J. Robertson, P. D. Franzmann, J. A. E. Gibson, and J. A. Puhakka. 2004. Culturable diversity and community fatty acid profiling of sulfate-reducing fluidizedbed reactors treating acidic, metal-containing wastewater. Geomicrob. J. 21: 469-480 https://doi.org/10.1080/01490450490505455
- Kaksonen, A. H., J. J. Plumb, W. J. Robertson, M. Riekkola-Vanhanen, P. D. Franzmann, and J. A. Puhakka. 2006. The performance, kinetics and microbiology of sulfidogenic fluidizedbed treatment of acidic metal- and sulfate-containing wastewater. Hydrometallurgy 83: 204-213 https://doi.org/10.1016/j.hydromet.2006.03.025
- Kawazuishi, K. and J. M. Prausnitz. 1987. Correlation of vaporliquid equilibria for the system ammonia-carbon dioxide-water. Ind. Eng. Chem. Res. 26: 1482-1485 https://doi.org/10.1021/ie00067a036
- Kimura, S., K. Hallberg, and D. Johnson. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 159-167
- Lens, P., M. V. G. Vallero, G. Esposito, and M. Zandvoort. 2002. Perspectives of sulfate reducing bioreactors in enviromental biotechnology. Rev. Environ. Sci. Biotechnol. 1: 311-325 https://doi.org/10.1023/A:1023207921156
- Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acids Res. 32: 1363-1371 https://doi.org/10.1093/nar/gkh293
- Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20-78 https://doi.org/10.1016/0076-6879(83)01005-8
- Morales, T. A., M. Dopson, R. Athar, and R. B. Herbert. 2005. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 90: 543-551 https://doi.org/10.1002/bit.20421
- Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322 https://doi.org/10.1016/S1369-5274(99)80055-1
- Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141 https://doi.org/10.1023/A:1000669317571
- Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172 https://doi.org/10.1007/BF02529967
- Paulo, P. L., R. Kleerebezem, G. Lettinga, and P. N. L. Lens. 2005. Cultivation of high-rate sulfate reducing sludge by pHbased electron donor dosage. J. Biotechnol. 118: 107-116 https://doi.org/10.1016/j.jbiotec.2005.03.007
- Peters, V., P. H. Janssen, and R. Conrad. 1999. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 38: 285-289 https://doi.org/10.1007/PL00006803
- Raskin, L., R. I. Amann, L. K. Poulsen, B. E. Rittmann, and D. A. Stahl. 1995. Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms. Water Sci. Tech. 31: 261-272
- Roest, K., H. G. H. J. Heilig, H. Smidt, W. M. de Vos, A. J. M. Stams, and A. D. L. Akkermans. 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28: 175-185
-
Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55
${^{\circ}C}$ ) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 64: 421-428 https://doi.org/10.1007/s00253-003-1430-4 - Stahl, D. A. and R. I. Amann. 1991. Development and application of nucleic acid probes in bacterial systematics, pp. 205-248. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester
- Stams, A., J. Van Dijk, C. Dijkema, and C. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114-1119
- Tabak, H. H., R. Scharp, J. Burckle, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14: 423-436 https://doi.org/10.1023/A:1027332902740
- Thiele, J. H. and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54: 20-29
- Van Houten, B. H. G. W. 2006. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewater. Wageningen University
- Van Houten, R. T., S. J. W. H. O. Elferink, S. E. van Hamel, L. W. H. Pol, and G. Lettinga. 1995. Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Bioresour. Technol. 54: 73-79 https://doi.org/10.1016/0960-8524(95)00117-4
- Van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594 https://doi.org/10.1002/bit.260440505
- Van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560 https://doi.org/10.1016/j.watres.2005.12.004
-
Veeken, A. H. M., L. Akoto, L. W. Hulshoff Pol, and J. Weijma. 2003. Control of the sulfide (
$S^{2-}$ ) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 37: 3709-3717 https://doi.org/10.1016/S0043-1354(03)00262-8 - Weijma, J., C. F. M. Copini, C. J. N. Buisman, and C. E. Schultz. 2002. Biological recovery of metals, sulfur and water in the mining and metallurgical industy, pp. 605-625. In P. N. L. Lens and L. Hulshoff Pol (eds.). Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing
- Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 67: 354-363 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
Cited by
- Long term performance of an AMD treatment bioreactor using chemolithoautotrophic sulfate reduction and ferrous iron precipitation under in situ groundwater conditions vol.104, pp.None, 2012, https://doi.org/10.1016/j.biortech.2011.11.022
- Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH-gradient bioreactor vol.110, pp.12, 2009, https://doi.org/10.1007/s10482-017-0917-4
- Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage From the Malanjkhand Copper Project, India vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.02882
- Dynamic Experimental Study on Treatment of Acid Mine Drainage by Bacteria Supported in Natural Minerals vol.13, pp.2, 2009, https://doi.org/10.3390/en13020439
- Study on the Effectiveness of Sulfate-Reducing Bacteria Combined with Coal Gangue in Repairing Acid Mine Drainage Containing Fe and Mn vol.13, pp.4, 2020, https://doi.org/10.3390/en13040995
- Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil vol.55, pp.4, 2009, https://doi.org/10.1080/10934529.2019.1709362
- Role of cost-effective organic carbon substrates in bioremediation of acid mine drainage-impacted soil of Malanjkhand Copper Project, India: a biostimulant for autochthonous microbial populations vol.27, pp.22, 2009, https://doi.org/10.1007/s11356-019-06293-6
- Optimising Brewery-Wastewater-Supported Acid Mine Drainage Treatment vis-à-vis Response Surface Methodology and Artificial Neural Network vol.8, pp.11, 2009, https://doi.org/10.3390/pr8111485
- Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion vol.11, pp.5, 2009, https://doi.org/10.3390/app11052201