• 제목/요약/키워드: thermodynamics

검색결과 431건 처리시간 0.031초

아스팔트 혼합물 실린더 시편을 이용한 열역학적 이론의 적용 및 검증 (Application and Verification of Thermodynamics by using Cylindrical Asphalt Mixture Specimen)

  • 윤태영;유평준
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.87-95
    • /
    • 2014
  • PURPOSES: Evaluation of thermal conductivity and convection properties of asphalt mixture by using thermodynamics. METHODS: In this research, temperature prediction model based on thermodynamics is derived for asphalt mixture in transient state and it is verified with laboratory test results. RESULTS: The derived temperature prediction model shows good agreement with laboratory test results. CONCLUSIONS: It is concluded that the derived model based on thermodynamics and thermal properties in the literature are good enough to capture temperature variation in laboratory test. The approach based on thermodynamics can be applied to more complex temperature simulations.

예제를 통해 본 학부 기계공학 교육에서 열역학 법칙의 소개 순서에 대한 논평 (A Comment on Presentation Order of Thermodynamic Laws for Undergraduate Mechanical-Engineering Education by Example Problems)

  • 박경근
    • 공학교육연구
    • /
    • 제21권2호
    • /
    • pp.3-6
    • /
    • 2018
  • A few thermodynamics texts are commonly found to have unrealistic example problems in which the process violates the second law of thermodynamics. This error would result from presentation order in the text which introduces first the first law for cycles, systems, and control volumes and then the second law later. In the presentation order, the example problems deal only with the first law without telling whether the process violates the second law. To correct this erroneous situation, it could be recommended to present the first law and the second law successively so that both laws could be applied simultaneously to the given example problems.

가용 에너지에 의한 열역학의 재구성 (II) - 실제세계 열역학 - (Reconstruction of Thermodynamics by the Concept of Available Energy (II) - Thermodynamics of Real World -)

  • 정평석
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1573-1581
    • /
    • 2004
  • Thermodynamic principles are described with a new point of view. In present study, the interaction between two systems is focused instead of the behavior of a system in conventional thermodynamics. The state change of a system cannot occur by itself but it is the result of the interaction between systems. However, the interaction itself is also the result of another kind of interaction, the interaction between two interactions. To reconstruct thermodynamics with such a point of view, the reversible world is imagined, in which conservations and measurements are discussed. There exists a conserved quantity for each mode of reversible interaction. The conserved transferring quantity in the interaction between interactions is the effective work, which is supposed to be measurable and conserved in reversible world. Effective work is the primary concepts of energy. It is the key factor to explain measurements, energy conservation and energy dissipation. The concepts developed in reversible world are applied to the real world in which irreversible phenomena may occur. Irreversibility is the result of effective energy dissipation, in which effective work irreversibly changes into entropy. A quantitative relation between the disappearing effective work and the generated entropy is dissipation equation which is given by experiments. A special temperature scale to give a very simple type of the dissipation equation is the absolute temperature scale, which gives the conventional conservation of energy.

열역학 교과목에 대한 플립러닝 교수법 적용 사례 (A Case Study on the Application of Flipped Learning Methodology to Thermodynamics in Mechanical Engineering)

  • 유경현
    • 공학교육연구
    • /
    • 제25권6호
    • /
    • pp.69-80
    • /
    • 2022
  • In this study, the application of flipped learning methodology to thermodynamics in mechanical engineering was examined, and how university students view flipped learning and the effects of flipped learning were analyzed. To analyze the effects of flipped learning, pre-class survey, assessment on learning in pre-class, team activities during class, and post-class survey were conducted. The analysis was also conducted on 33 students who took the thermodynamics course in mechanical engineering, and the PARTNER flipped learning model was applied to the class. The results of this study are as follows; In the preliminary survey, the students expected that the flip-learning class with team activities and teaching between team members would be helpful in improving their learning. In addition, students recognized that cooperative learning through a team was helpful for learning. The case reflecting the result of pre-learning evaluation to the subject grades showed higher pre-learning evaluation results than the case not reflecting the result of the pre-learning evaluation to the subject grades, and it was found that the pre-learning evaluation was acting as a factor to promote learning in pre-class. In post-class survey, the satisfaction with the flipped learning class was high, indicating that the effectiveness of the flipped learning class applied to the thermodynamics class was excellent.

Transport Properties of Charged Mosaic Membrane Based on Non-equilibrium Thermodynamics

  • Song, Myung-Kwan;Yang, Wong-Kang
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.67-70
    • /
    • 2005
  • It is well known as the role of ion exchange membrane with functional group in membrane matrix. Recently, we were reported that the charged mosaic membrane within parallel array of negative and positive charge groups. In this study we are reported the properties for the various transport coefficients of metal and heavy metal ions across charged mosaic membrane based on non-equilibrium thermodynamics is not based on equilibrium state.

The Theoretical Calculations of Kinetic and Thermodynamics Parameters and Anharmonic Correction for the Related Reactions of NO3

  • Yu, Hongjing;Liu, Yancheng;Xia, Wenwen;Wang, Li;Jiang, Meiyi;Hu, Wenye;Yao, Li
    • 대한화학회지
    • /
    • 제65권6호
    • /
    • pp.419-432
    • /
    • 2021
  • According to the transition state (TS) theory, Gaussian software and Yao and Lin (YL) method, the thermodynamics and kinetic data respectively were calculated, and anharmonic effect was considered for related reactions of NO3. The methods of calculating and fitting kinetic and thermodynamics parameters were provided by least square method and related equations in this paper. Notably, the fitted E of Arrhenius equation was close to the calculated barrier of related reaction by QCISD(T) method. Therefore, the kinetic fitting result can well express the physical meaning of E in Arrhenius equation. Besides, the conversion process and the reaction mechanism of NO3 were researched. For NO3, it seemed that its instability results from its easy reaction with other substances rather than the decompose reaction of itself.

에너지의 가용성과 열역학의 재구성 (I) 가역세계 열역학 (Availability of Energy and Reconstruction of Thermodynamics(I) Thermodydamics of the Reversible World)

  • 정평석;노승탁
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1227-1236
    • /
    • 1993
  • 본 연구에서는 또하나의 새로운 서술방식을 제시하게 되는데, 먼저 에너지 이동현상으로서의 일중에서 가용일을 분리하고, 가역과정만이 가능한 세계 즉 가역세 계 안에서 측정과 산정이 가능하도록 열역학의 가장 중요한 물리량인 온도와 엔트로피, 열 등을, 가용일의 가측성을 이용하여 정의한 다음, 그러한 제한조건하에서 기존 열역 학의 기본 법칙들이 어떻게 표시되는가 살펴보고, 이것을 비가역과정에 확장하는 식의 순서에 따라 열역학의 기존원리들에 대한 서술을 재구성하고자 한다.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.