DOI QR코드

DOI QR Code

Effect of Precultural and Nutritional Parameters on Compactin Production by Solid-State Fermentation

  • Nikhil S., Shaligram (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singh, Sudheer Kumar (Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST) (Formerly Regional Research Laboratory)) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Szakacs, George (Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics) ;
  • Pandey, Ashok (Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST) (Formerly Regional Research Laboratory))
  • Published : 2009.07.31

Abstract

In the present study, production of compactin by Penicillium brevicompactum WA 2315 was studied. In the first step, various precultural parameters were studied by substituting one factor at a time. Subsequently, the effect of maltodextrin DE 18 on compactin production was studied. The optimized parameters gave maximum compactin production of 850 ${\mu}g/gds$as compared with 678 ${\mu}g/gds$before optimization. Statistical study was performed to further improve the production and develop a robust model. An improved yield of 950 ${\mu}g/gds$was obtained using the conditions proposed by the experimental model. The present study emphasizes the importauce of precultural and nutritional parameters on the production of compactin, and further confirms the usefulness of solid-state fermentation for the production of industrially important secondary metabolites. It also confirms that complex nitrogen sources such as oil cakes can be used for the production of compactin.

Keywords

References

  1. Bazarra, W. A., M. K. Hamdy, and R. Toledo. 1998. Bioreactor for continuous synthesis of compactin by Penicillium cyclopium. J. Ind. Microbiol. Biotechnol. 21: 192-202 https://doi.org/10.1038/sj.jim.2900565
  2. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475 https://doi.org/10.2307/1266454
  3. Chakravarti, R. and V. Sahai. 2002. Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem. 38: 481-486 https://doi.org/10.1016/S0032-9592(02)00138-3
  4. Chakravarti, R. and V. Sahai. 2004. Compactin - a review. Appl. Microbiol. Biotechnol. 64: 618-624 https://doi.org/10.1007/s00253-003-1553-7
  5. Chundakkadu, K. 2005. Solid state fermentation systems - An overview. Crit. Rev. Biotechnol. 25: 1-30 https://doi.org/10.1080/07388550590925383
  6. Endo, A., M. Kuroda, and Y. Tsujita. 1976. ML-236a, ML-236b, and ML-236c, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiot. 29: 1346-1348 https://doi.org/10.7164/antibiotics.29.1346
  7. Endo, A., K. Hasumi, A. Yamada, R. Shimoda, and H. Takeshima. 1986. The synthesis of compactin (ML-236B) and monacolin K in fungi. J. Antibiot. 39: 1609-1610 https://doi.org/10.7164/antibiotics.39.1609
  8. Gao, H. and W. Y. Gu. 2007. Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochem. Eng. J. 33: 202-210 https://doi.org/10.1016/j.bej.2006.10.022
  9. Hosobuchi, M., T. Shiori, J. Ohyama, M. Arai, S. Iwado, and H. Yoshikawa. 1993. Production of ML-236B, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase, by Penicillium citrinum: Improvement of strain and culture conditions. Biosci. Biotechnol. Biochem. 57: 1414-1419 https://doi.org/10.1271/bbb.57.1414
  10. John, R. P., R. K. Sukumaran, K. M. Nampoothiri, and A. Pandey. 2007. Statistical optimization of simultaneous saccharification and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochem. Eng. J. 36: 262-267 https://doi.org/10.1016/j.bej.2007.02.028
  11. Konya, A., A. Jekkel, J. Sutö, and J. Salat. 1998. Optimization of compactin fermentation. J. Ind. Microbiol. Biotechnol. 20: 150-152 https://doi.org/10.1038/sj.jim.2900508
  12. Kumar, M. S., S. K. Jana, V. Senthil, S. Shasshanka, V. Kumar, and A. K. Sadhukhan. 2000. Repeated fed-batch process for improving lovastatin production. Process Biochem. 36: 363-368 https://doi.org/10.1016/S0032-9592(00)00222-3
  13. Linde, G. A., G. Magagnin, J. A. V. Costa, T. E. Bertolin, and N. B. Colauto. 2007. Column bioreactor use for optimization of pectinase production in solid substrate cultivation. Braz. J. Microbiol. 38: 557-562 https://doi.org/10.1590/S1517-83822007000300033
  14. Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem. 40: 2757-2762 https://doi.org/10.1016/j.procbio.2004.12.025
  15. L$\acute{o}$pez, J. L. C., J. A. S. P$\acute{e}$rez, J. M. F. Sevilla, F. C. A. Fern$\acute{a}$ndez, E. M. Grima, and Y. Chisti. 2004. Fermentation optimization for the production of lovastatin by Aspergillus terreus: Use of response surface methodology. J. Chem. Technol. Biotechnol. 79: 1119-1126 https://doi.org/10.1002/jctb.1100
  16. Manzoni, M., S. Bergomi, M. Rollni, and V. Cavazzoni. 1999. Production of statins by filamentous fungi. Biotechnol. Lett. 21: 253-257 https://doi.org/10.1023/A:1005495714248
  17. Pandey, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13: 81-84 https://doi.org/10.1016/S1369-703X(02)00121-3
  18. Sayyad, S. A., B. P. Panda, S. Javed, and M. Ali. 2007. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl. Microbiol. Biotechnol. 73: 1054-1058 https://doi.org/10.1007/s00253-006-0577-1
  19. Shaligram, N. S., S. K. Singh, R. S. Singhal, G. Szakacs, and A. Pandey. 2008. Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum. Biochem. Eng. J. 41: 295-300 https://doi.org/10.1016/j.bej.2008.05.011
  20. Singh, S. K., G. Szakacs, C. R. Soccol, and A. Pandey. 2007. Production of enzymes by solid-state fermentation, pp. 183-200. In A. Pandey, C. Larroche, and C. R. Soccol (eds.). SSF for Bulk Chemicals and Products Part 2, Asia Tech Publishers, New Delhi, India
  21. Tholudur, A., T. Sorensen, X. Zhu, and S. Shepard. 2005. Using design of experiments to assess Escherichia coli fermentation robustness. Bioprocess In. 3: 46-48
  22. Valera, H. R., J. Gomes, S. Lakshmi, R. Gururaja, S. Suryanarayan, and D. Kumar. 2005. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enz. Microbial Technol. 37: 521-526 https://doi.org/10.1016/j.enzmictec.2005.03.009

Cited by

  1. Emerging Approaches in Fermentative Production of Statins vol.171, pp.4, 2013, https://doi.org/10.1007/s12010-013-0400-2
  2. Production and Evaluation of Antimycotic and Antihepatitis C Virus Potential of Fusant MERV6270 Derived from Mangrove Endophytic Fungi Using Novel Substrates of Agroindustrial Wastes vol.174, pp.8, 2009, https://doi.org/10.1007/s12010-014-1218-2
  3. Valorization of Agricultural Residues for Compactin Production by Aspergillus terreus MTCC 279 in Mixed Substrate Solid State Fermentation vol.5, pp.4, 2014, https://doi.org/10.1007/s12649-013-9276-1
  4. Biotechnological Production of Statins: Metabolic Aspects and Genetic Approaches vol.20, pp.15, 2009, https://doi.org/10.2174/1389201020666190718165746