Investigation on Structure and Properties of a Novel Designed Peptide with Half-Sequence Ionic Complement

  • Ruan, Li-Ping (Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University) ;
  • Luo, Han-Lin (Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University) ;
  • Zhang, Hang-Yu (Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University) ;
  • Zhao, Xiaojun (Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University)
  • Published : 2009.08.25

Abstract

Although the existing design principle of full-sequence ionic complement is convenient for the development of peptides, it greatly constrains the exploration of peptides with other possible assembly mechanisms and different yet essential functions. Herein, a novel designed half-sequence ionic complementary peptide (referred to as P9), AC-Pro-Ser-Phe-Asn-Phe-Lys-Phe-Glu-Pro-$NH_2$, is reported. When transferred from pure water to sodium chloride solution, P9 underwent a dramatic morphological transformation from globular aggregations to nanofibers. Moreover, the rheological experiment showed that the P9 could form a hydrogel with a storage modulus of about 30 Pa even at very low peptide concentration (0.5% (wt/vol)). The P9 hydrogel formed in salt solution could recover in a period of about 1,800 sec, which is faster than that in the pure water. The data suggestcd that the half-sequence, ionic complementary peptide might be worthy of further research for its special properties.

Keywords

References

  1. S. Zhang, T. Holmes, C. Lockshin, and A. Rich, Proc. Natl. Acad. Sci. USA, 90, 3334 (1993) https://doi.org/10.1073/pnas.90.8.3334
  2. S. Zhang, D. M. Marini, W. Hwang, and S. Santoso, Curr. Opin. Chem. Biol., 6, 865 (2002)
  3. H. Yokoi, T. Kinoshita, and S. Zhang, Proc. Natl. Acad. Sci. USA, 102, 8414 (2005) https://doi.org/10.1073/pnas.0407843102
  4. S. Zhang and M. Altman, React. Funct. Polym., 41, 91 (1999) https://doi.org/10.1016/S1381-5148(99)00031-0
  5. S. Zhang, F. Gelain, and X. Zhao, Semin. Cancer Biol., 15, 413 (2005) https://doi.org/10.1016/j.semcancer.2005.05.007
  6. S. Zhang, Mater. Today, 6, 20 (2003)
  7. T. C. Holmes, S. De Lacalle, X. Su, G. Liu, A. Rich, and S. Zhang, Proc. Natl. Acad. Sci. USA, 97, 6728 (2000) https://doi.org/10.1073/pnas.97.12.6728
  8. X. Zhao, Y. Nagai, P. J. Reeves, P. Kiley, H. G. Khorana, and S. Zhang, Proc. Natl. Acad. Sci. USA, 103, 17707 (2006) https://doi.org/10.1073/pnas.0607167103
  9. A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles, T. C. McLeish, M. Pitkeathly, and S. E. Radford, Nature, 386, 259 (1997) https://doi.org/10.1038/386259a0
  10. M. R. Caplan, P. N. Moore, S. Zhang, R. D. Kamm, and D. A. Lauffenburger, Biomacromolecules, 1, 627 (2000) https://doi.org/10.1021/bm005586w
  11. M. R. Caplan, E. M. Schwartzfarb, S. Zhang, R. D. Kamm, and D. A. Lauffenburger, Biomaterials, 23, 219 (2002) https://doi.org/10.1016/S0142-9612(01)00099-0
  12. J. H. Collier, B. H. Hu, J. W. Ruberti, J. Zhang, P. Shum, and D. H. Thompson, J. Am. Chem. Soc., 123, 9463 (2001) https://doi.org/10.1021/ja011535a
  13. L. Ruan, H. Zhang, H. Luo, J. Liu, F. Tang, Y. Shi, and X. Zhao, Proc. Natl. Acad. Sci. USA, 106, 5105 (2009) https://doi.org/10.1073/pnas.0900026106
  14. N. Sreerama and R. W. Woody, Anal. Biochem., 287, 252 (2000) https://doi.org/10.1006/abio.2000.4880
  15. K. Gilson, M. R. John, K. J. Je, S. L. Jeong, S. K. Moon, H. C. Sun, and B. L. Hai, Macromol. Res., 11, 207 (2003) https://doi.org/10.1007/BF03218355
  16. S. Nahar and H. A. Tajmir-Riahi, J. Inorg. Biochem., 58, 223 (1995) https://doi.org/10.1016/0162-0134(94)00055-F
  17. J. P. Laussac, P. Orlewski, and M. T. Cung, Coord. Chem. Rev., 149, 179 (1996)
  18. R. Ferrari, S. Bernes, C. R. de Barbarin, G. Mendoza-Diaz, and L. Gasque, Inorg. Chim. Acta, 339, 193 (2002) https://doi.org/10.1016/S0020-1693(02)01047-2
  19. M. Benzakour, M. McHarfi, A. Cartier, and A. Daoudi, J. Mol. Struct., 710, 169 (2004) https://doi.org/10.1016/j.theochem.2004.09.009
  20. L. Wu, E. C. Meurer, B. Young, P. Yang, M. N. Eberlin, and R. G. Cooks, Int. J. Mass Spectrom., 231, 103 (2004) https://doi.org/10.1016/j.ijms.2003.09.017
  21. W. D. Gates, J. Rostas, B. Kakati, and M. Ngu-Schwemlein, J. Mol. Struct., 733, 5 (2005) https://doi.org/10.1016/j.molstruc.2004.07.031
  22. S. Ghosh, P. Singh, and S. Verma, Tetrahedron, 64, 1250 (2008) https://doi.org/10.1016/j.tet.2007.11.077
  23. P. Chen, H. S. Kim, C.-Y. Park, H.-S. Kim, I.-J. Chin, and H.-J. Jin, Macromol. Res., 16, 539 (2008) https://doi.org/10.1007/BF03218556