DOI QR코드

DOI QR Code

Electrical Properties and Dielectric Characteristics CCT-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Choon-Woo (Semiconductor Ceramics Lab., Department of Electrical Engineering, Dongeui University)
  • 발행 : 2009.06.25

초록

The microstructure, voltage-current, capacitance-voltage, and dielectric characteristics of CCT doped Zn/Pr-based varistors were investigated at different sintering temperatures. As the sintering temperature increased, the average grain size increased from 4.3 to 5.1 ${\mu}m$ and the sintered density was saturated at 5.81 g $cm^{-3}$. As the sintering temperature increased, the breakdown field decreased from 7,532 to 5,882 V $cm^{-1}$ and the nonlinear coefficient decreased from 46 to 34. As the sintering temperature increased, the donor density, density of interface states, and barrier height decreased in the range of (9.06-7.24)${\times}10^{17}\;cm^{-3}$, (3.05-2.56)${\times}10^{12}\;cm^{-2}$, and 1.1-0.95 eV, respectively. The dielectric constant exhibited relatively low value in the range of 529.1-610.3, whereas the $tan{\delta}$ exhibited a high value in the range of 0.0910-0.1053.

키워드

참고문헌

  1. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull. 65, 639(1986)
  2. T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. Y. S. Lee and T. Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04236.x
  4. A. B. Alles and V. L. Burdick, J. Appl. Phys. 70, 6883 (1991) https://doi.org/10.1063/1.349812
  5. A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  6. Y.-S. Lee, K.-S. Liao, and T.- Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  7. C.-W. Nahm, Mater. Lett. 47, 182 (2001) https://doi.org/10.1016/S0167-577X(00)00262-7
  8. C.-W. Nahm and J.-S. Ryu, Mater. Lett. 53, 110 (2002) https://doi.org/10.1016/S0167-577X(01)00464-5
  9. C.-W. Nahm, Mater. Lett. 57, 1317 (2003) https://doi.org/10.1016/S0167-577X(02)00979-5
  10. C.-W. Nahm and B.-C. Shin, Mater. Lett. 57, 1322 (2003) https://doi.org/10.1016/S0167-577X(02)00980-1
  11. C.-W. Nahm, Mater. Lett. 58, 2252 (2004) https://doi.org/10.1016/S0167-577X(04)00104-1
  12. C.-W. Nahm and B.-C. Shin, J. Mater. Sci.: Mater. Electron. 16, 725 (2005) https://doi.org/10.1007/s10854-005-4975-4
  13. C.-W. Nahm, Mater. Lett. 60, 3394 (2006) https://doi.org/10.1016/j.matlet.2006.06.015
  14. C.-W. Nahm, Trans. Electr. Electron. Mater. 8, 105 (2007) https://doi.org/10.4313/TEEM.2007.8.3.105
  15. C.-W. Nahm, Mater. Lett. 62, 2900 (2008) https://doi.org/10.1016/j.matlet.2008.01.068
  16. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  17. M. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys. 50, 4475 (1979) https://doi.org/10.1063/1.326411
  18. L. Hozer, Semiconductor Ceramics: Grain Boundary Effects, Ellis Horwood,(1994), p.22
  19. S. O. Kasap, Electronic Materials and Devices, McGraw-Hill, (2002), p. 526

피인용 문헌

  1. Performance Evaluation of Doped Titanium Oxide for Low-Voltage Applications vol.12, pp.6, 2015, https://doi.org/10.1111/ijac.12477
  2. Magnetically Tuned Varistor and Its Embedded Transistors vol.4, pp.6, 2016, https://doi.org/10.1109/JEDS.2016.2579880
  3. Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2 vol.25, pp.6, 2016, https://doi.org/10.1088/1674-1056/25/6/068402
  4. Nature and Characteristics of a Voltage-Biased Varistor and its Embedded Transistor vol.3, pp.3, 2015, https://doi.org/10.1109/JEDS.2015.2409023
  5. Properties and Applications of Varistor–Transistor Hybrid Devices vol.43, pp.5, 2014, https://doi.org/10.1007/s11664-014-3067-8
  6. Magnetically tuned varistor-transistor hybrid device vol.2, pp.4, 2012, https://doi.org/10.1063/1.4773328