Computational Analysis of Parabolic Overtopping Wave Energy Convertor

포물선형 월류파력발전장치에 대한 수치해석

  • Liu, Zhen (Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China) ;
  • Hyun, Beom-Soo (College of Ocean Science and Technology, Korea Maritime University) ;
  • Jin, Ji-Yuan (College of Ocean Science and Technology, Korea Maritime University)
  • 류진 (중국해양대학교 산동성중점해양공학실험실) ;
  • 현범수 (한국해양대학교 해양과학기술대학) ;
  • 김길원 (한국해양대학교 해양과학기술대학)
  • Received : 2009.08.07
  • Accepted : 2009.10.16
  • Published : 2009.11.25

Abstract

Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor for collecting the overtopping waves and converting the water pressure head into electric power through the hydro turbines installed in the vertical duct which is fixed in the sea bed. The numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. Several incident wave conditions and shape parameters of the overtopping device are calculated. The straight line type and parabolic type of the sloping arm are compared in the optimal designing investigation of the overtopping characteristics and discharge for OWEC device. The numerical results demonstrate that the parabolic sloping arm is available for wave running up and the overtopping discharge increasing.

월파형 파력발전장치는 월류된 파랑으로 인하여 발생한 수두차를 이용하여 터빈을 구동하는 일종의 파랑에너지 변환장치로써 파랑에너지를 전기 에너지로 변환하는 장치이다. 본 연구는 상용 CFD코드 인 Fluent를 사용하여 수치 조파수조를 구현하여 월파형 파력발전장치의 해석에 도입을 하여 입사파 조건과 형상에 대한 계산을 수행하였다. 최적의 월류성능을 나타내는 구조물 사면형상을 도출하기 위하여 직선형과 포물선형을 채택하여 비교분석을 수행한 결과 포물선형 사면경사를 갖는 구조물이 더 우수한 월류성능을 보인다는 것을 확인 하였다.

Keywords

References

  1. Hieu, P.D., Katsutoshi, T. and Ca, V.T., 2004, "Numerical Simulation of Breaking Waves using a Two-phase Flow Model", Applied Mathematical Modeling, Vol. 28, No. 11, pp. 983-1005. https://doi.org/10.1016/j.apm.2004.03.003
  2. Hu, K. Mingham, C.G. and Causon, D.M., 2000, "Numerical Simulation of Wave Overtopping of Coastal Structures Using the Nonlinear Shallow Water Equations", Coastal Engineering, Vol. 41, No. 4, pp. 433-465. https://doi.org/10.1016/S0378-3839(00)00040-5
  3. Isobe, M., 2001, "A VOF-based Numerical Model for Wave Transformation in Shallow Water", In Proc Int Workshop on ADMS21, PHRI, pp. 200-204.
  4. Kofoed, JP., Frigaard, P., Madsen, E.F. and Sorensen, H.C., 2006, "Prototype Testing of the Wave Energy Converter Wave Dragon", Renewable Energy, Vol. 31, No. 2, pp. 181-189. https://doi.org/10.1016/j.renene.2005.09.005
  5. Lin, P. and Liu, PL-F. 1998, "A Numerical Study of Breaking Waves in the Surf Zone", J Fluid Mech, Vol. 359, pp. 239-264. https://doi.org/10.1017/S002211209700846X
  6. Liu, Z., Hyun, B.S. and Jin, J.Y., 2008, "The Application of FBNWT in Wave Overtopping Analysis", Journal of Ocean Engineering and Technology, Vol. 22, No. 1, pp. 1-5.
  7. Liu, Z., Hyun, B.S. and Jin, J.Y., 2008, "Numerical Prediction for Overtopping Performance of OWEC", Journal of the Korea Society for Marine Environmental Engineering, Vol. 11, No. 1, pp. 35-41.
  8. Margheritini, L., Vicinanza, D., Frigaard, P., 2009, "SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device", Renewable Energy, Vol. 34, pp. 1371-1380. https://doi.org/10.1016/j.renene.2008.09.009
  9. Shin, S.H., Hong, K.Y., Ryu, H.J. and Kim, J.H., 2008, "Analysis of wave overflowing characteristics for a reef-type structure", Proceeding of The Korean Society of Ocean Engineering, pp. 68-71.