Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss

질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과

  • Kwak, Jin-Hyeob (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Lim, Sang-Sun (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Park, Hyun-Jung (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Lee, Sun-Il (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Lee, Dong-Suk (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Lee, Kye-Han (Department of Forestry, Chonnam National University) ;
  • Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Ro, Hee-Myong (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang-Mo (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Choi, Woo-Jung (Department of Biosystems & Agricultural Engineering, Institute of Agricultural Science & Technology, Chonnam National University)
  • 곽진협 (전남대학교 농업과학기술원 생물산업공학과) ;
  • 임상선 (전남대학교 농업과학기술원 생물산업공학과) ;
  • 박현정 (전남대학교 농업과학기술원 생물산업공학과) ;
  • 이선일 (전남대학교 농업과학기술원 생물산업공학과) ;
  • 이동석 (전남대학교 농업과학기술원 생물산업공학과) ;
  • 이계한 (전남대학교 산림자원조경학부) ;
  • 한광현 (충북대학교 농화학과) ;
  • 노희명 (서울대학교 응용생물화학부) ;
  • 이상모 (서울대학교 농생명과학공동기기원) ;
  • 최우정 (전남대학교 농업과학기술원 생물산업공학과)
  • Received : 2009.01.12
  • Accepted : 2009.02.10
  • Published : 2009.02.28

Abstract

Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

질소동위원소비(${\delta}^{15}N$)가 낮은 대기질소 강하물의 유입에 의해 산림 생태계 내 다양한 시료(나이테, 엽, 토양)의 ${\delta}^{15}N$ 값이 낮아지는 것으로 보고되고 있다. 하지만, 토양 미생물과 식물이 쉽게 이용할 수 있는 토양 무기태 질소의 ${\delta}^{15}N$에 대한 연구는 진행된 바 없다. 본 연구는 대기질소 강하물이 상대적으로 적은 농촌지역과 많은 공업지역에 위치한 적송 산림지역의 유기토양층과 무기토양층(0~20 cm와 20~40 cm) 중 $NH_4{^+}$$NO_3{^-}$${\delta}^{15}N$값을 분석하여 두 지역간의 차이를 조사하였으며, 이들 ${\delta}^{15}N$ 값을 근거로 조사 지역의 질소손실 민감성을 평가하였다. 농촌지역과 공업지역에서 $NH_4{^+}$${\delta}^{15}N$ 값은 각각 +8.9 ~ +24.8‰과 +4.4 ~ +13.8‰로 분포하였다.유기토양층과 무기토양층(0~20 cm)에서 두 지역간 $NH_4{^+}$${\delta}^{15}N$값 차이가 나타났는데, 공업지역에서 각각4.4‰과 +13.8‰이었고, 농촌지역에서는 각각 +8.9‰과 +24.3‰로 공업지역에서 더 낮은 ${\delta}^{15}N$ 값이 나타났다.이는 공업지역에서 ${\delta}^{15}N$값이 낮은 대기 유래 $NH_4{^+}$ 유입량이 더 많았음을 의미한다. 한편, $NO_3{^-}$${\delta}^{15}N$ 값은 지역간 차이가 없었는데, 이는 $NO_3{^-}$가 용탈과 탈질 등에 의해 쉽게 손실되는 과정에서 수반되는 질소동위원소 분할 효과에 의해 강하물에서 유래된 $NO_3{^-}$${\delta}^{15}N$ 기여도가 낮아지기 때문으로 판단된다. 본 연구에서 관측된 무기태 질소의 ${\delta}^{15}N$ 값은 다른 지역에서 조사된 $NH_4{^+}$(-10.9 ~ +15.6‰)과 $NO_3{^-}$(14.8 ~ +5.6‰)의 ${\delta}^{15}N$ 값보다 매우 높은데, 이는 본 연구지역에서 토양 질소 손실 가능성이 높음을 보여준다. 이상의 연구 결과에 의하면 산림토양의 무기태 질소 중 $NO_3{^-}$보다 $NH_4{^+}$이 질소공급원(대기 질소 강하)에 대한 ${\delta}^{15}N$ 정보를 보다 잘 반영하는 것으로 판단된다.

Keywords

References

  1. Bedard-Haughn, A., J.W. van Groenigenand, and C. van Kessel. 2003. Tracing $^15$N through landscapes: potential uses and precautions. J. Hydrol. 272:175-190 https://doi.org/10.1016/S0022-1694(02)00263-9
  2. Bukata, A.R., and T.K. Kyser. 2007. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environ. Sci. Technol. 41:1331-1338 https://doi.org/10.1021/es061414g
  3. Chang, S.X., and L.L. Handley. 2000. Site history affects soil and plant $^{15}$N natural abundances $({\delta}^{15}N)$ in forests of northern Vancouver Island, British Columbia. Funct. Ecol. 14:273-280 https://doi.org/10.1046/j.1365-2435.2000.00424.x
  4. Choi, W.J. 2007. Development of a technique to reconstruct acid deposition records using stable isotope signatures in annual tree rings. Research report, Chonnam National University, Gwangju, Korea
  5. Choi, W.J., S.X. Chang, H.L. Allen, D.L. Kelting, and H.M. Ro. 2005a. Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand. Forest Ecol. Manag. 213:90-101 https://doi.org/10.1016/j.foreco.2005.03.016
  6. Choi, W.J., S.X. Chang, and J.S. Bhatti. 2007. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology 88:443-453 https://doi.org/10.1890/0012-9658(2007)88[443:DATGAC]2.0.CO;2
  7. Choi, W.J., S.M. Lee, S.X. Chang, and H.M. Ro. 2005b. Variations of $\delta$$^1{3}$C and $\delta$$^{15}$N in Pinus densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water Air Soil Poll. 164:173-187 https://doi.org/10.1007/s11270-005-2253-y
  8. Choi, W.J., S.M. Lee, G.H. Han, K.S. Yoon, J.W. Jung, S.S. Lim, and J.H. Kwak. 2006. Available organic carbon controls nitrification and immobilization of ammonium in an acid loamtextured soil. Agric. Chem. Biotechnol. 49:28-32
  9. Choi, W.J., H.M. Ro, and S.M. Lee. 2003. Natural 15N abundances of inorganic nitrogen in soil treated with fertilizer and compost under changing soil moisture regimes. Soil Biol. Biochem. 35:1289-1298 https://doi.org/10.1016/S0038-0717(03)00199-8
  10. Emmett, B.A., O.J. Kj$\phi$naas, P. Gundersen, C. Koopmans, A. Tietema, and D. Sleep. 1998. Natural abundances of $^{15}$N in forests across a nitrogen deposition gradient. Forest Ecol. Manag. 101:9-18 https://doi.org/10.1016/S0378-1127(97)00121-7
  11. Feast, N.A., and P.E. Dennis. 1996. A comparison of methods for nitrogen isotope analysis of groundwater. Chem. Geol. 129: 167-171 https://doi.org/10.1016/0009-2541(95)00186-7
  12. Hauck, R.D. 1982. Nitrogen-isotope ratio analysis. p. 735-779. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA
  13. Heaton, T.H.E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 59: 87-102 https://doi.org/10.1016/0009-2541(86)90046-X
  14. H$\ddot{o}$gberg, P. 1990. Forests losing large quantities of nitrogen have elevated $^{15}$N:$^{14}$N ratios. Oecologia 84:229-231 https://doi.org/10.1007/BF00318276
  15. H$\ddot{o}$gberg, P. 1997. $^{15}$N natural abundance in soil-plant systems. New Phytol. 137:179-203 https://doi.org/10.1046/j.1469-8137.1997.00808.x
  16. H$\ddot{o}$gberg, P., and C. Johannisson. 1993. $^{15}$N abundances of forests is correlated with losses of nitrogen. Plant Soil 157:147-150 https://doi.org/10.1007/BF00038758
  17. Jung, K., G. Gebauer, M. Gehre, D. Hofmann, L. Wei$\beta$flog, and G. Sch$\ddot{u}$$\ddot{u}$rmann. 1997. Anthropogenic impacts on natural nitrogen isotope variations in Pinus sylvestris stands in an industrially polluted area. Environ. Pollut. 97:175-181 https://doi.org/10.1016/S0269-7491(97)00053-5
  18. Karamanos, R.E., and D.A. Rennie. 1981. The isotope composition of residual fertilizer nitrogen in soil columns. Soil Sci. Soc. Am. J. 45:316-321 https://doi.org/10.2136/sssaj1981.03615995004500020018x
  19. Keeney, D.R. and D.W. Nelson. 1982. Nitrogen-inorganic forms. P.643-698. In A.L. Page et al. (eds) Methods of soil analysis. Part 2:Chemical and microbiological properties. Soil Science Society of America, Madison, Wisconsin, USA
  20. Koba, K., N. Tokuchi, T. Yoshioka, E.A. Hobbie, and G. Iwatsubo. 1998. Natural abundance of nitrogen-15 in a forest soil. Soil Sci. Soc. Am. J. 62:778-787 https://doi.org/10.2136/sssaj1998.03615995006200030034x
  21. Korea Industrial Complex Corporation. 2007. Status of National Industrial Complex, Seoul, Korea
  22. Kwak, J.H., S.S. Lim, H.J. Park, S.I. Lee, K.H. Lee, H.Y. Kim, S.X. Chang, S.M. Lee, H.M. Ro, and W.J. Choi. 2009. Relating tree ring chemistry of Pinus densiflor to precipitation acidity in an industrial area of South Korea. Water Air Soil Pollut. (DOI 10.1007/s11270-008-9862-1)
  23. Laverman, A.M., H.R. Zoomer, H.W. van Verseveld, and H.A. Verhoef. 2000. Temporal and spatial variation of nitrogen transformations in a coniferous forest soil. 2000. Soil Biol. Biochem. 31: 1661-1670 https://doi.org/10.1016/S0038-0717(00)00082-1
  24. Lee, S.M., W.J. Choi, S.I. Yun, Y.D. Choi, Y.D., H.M. Ro, and J.W. Park. 2002. Evaluation of fate of $NH_{4}^{+}$ of condensed molasses solubles (CMS) in soil using by $^{15}N$-tracer method. Koran J. Soil Sci. Fert. 35:69-76
  25. Ministry of Environment of Korea. 2007. Annual Reports of Ambient Air Quality in Korea, Ministry of Environment, Seoul, Korea.
  26. Nadelhoffer, K.J., B.A. Emmett, P. Gundersen, O.J. Kj$\o$naas, C.J. Koopmans, C.J., P. Schleppi, A.Tietema, and R.F. Wright. 1999.Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145-148 https://doi.org/10.1038/18205
  27. Norby, R.J. 1998. Nitrogen deposition: A component of global change analyses. New Phytol. 139:189-200 https://doi.org/10.1046/j.1469-8137.1998.00183.x
  28. Poulson, S.R., C.P. Chamberlain, and A.J. Friedland. 1995. Nitrogen isotope variation of tree rings as a potential indicator of environmental change. Chem. Geol. 125:307?315 https://doi.org/10.1016/0009-2541(95)00097-6
  29. Rural Development Administration. 2000. Detailed Korea Soil Map, Suwon, Korea
  30. Rural Development Administration. 2000. Detailed Korea Soil Map, Suwon, Koreaecosystems. Can. J. For. Res. 13:747-766 https://doi.org/10.1139/x83-105
  31. Vervaet, H., P. Boeckx, V. Unamuno, O. van Cleemput, and G. Hofman. 2002. Can $\delta$$^15$N profiles in forest soils predict NO$_3$$^-$ loss and net mineralization rates. Biol. Fert. Soils 36:143-150 https://doi.org/10.1007/s00374-002-0522-0
  32. Xiao, H.Y. and C.Q. Liu. 2002. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China. Atmos. Environ. 36:5121-5130 https://doi.org/10.1016/S1352-2310(02)00649-0