Risk Assessment of As, Cd, Cu and Pb in Different Rice Varieties Grown on the Contaminated Paddy Soil

중금속 오염 논토양에서 재배된 벼 품종간 위해성평가 비교

  • 김원일 (국립농업과학원 유해물질과) ;
  • 김진경 (국립농업과학원 유해물질과) ;
  • 류지혁 (국립농업과학원 유해물질과) ;
  • 백민경 (국립농업과학원 유해물질과) ;
  • 박상원 (농촌진흥청 연구정책국) ;
  • 권오경 (국립농업과학원 유해물질과) ;
  • 홍무기 (국립농업과학원 유해물질과) ;
  • 양재의 (강원대학교 자원생물환경학과) ;
  • 김정규 (고려대학교 환경생태공학부)
  • Received : 2009.01.15
  • Accepted : 2009.02.08
  • Published : 2009.02.28

Abstract

Heavy metal pollution may be one of the most serious challenges confront crop production and human health. Therefore, the selection of heavy metal tolerance cultivars which adapted to the contaminated fields will introduced a suitable solution for management this critical environmental risk. The objectives of this research is to assess human health risk using geochemical analyses and exposure assessment of heavy metals in rice cultivars. Risk for inhabitants in the closed mine area was comparatively assessed for As, Cd, Cu and Pb in 10 rice varieties as a major exposure pathway. The average daily dose (ADD) of each heavy metal was estimated by analyzing the exposure pathways to rice and soil. For the non-carcinogenic risk characterization, Hazard Quotient (HQ) and Hazard Index (HI) were calculated using toxicity indices provided by US-EPA IRIS. The different rice varieties revealed a wide range of HI values from 23.6 to 34.3, indicating that all rice varieties have a high potential toxic risk. The DA rice variety showed the lowest HI value while the TB rice variety the highest. The probabilities of cancer risk for As via rice consumption were varied with rice varieties ranging from 2.0E-03 to 3.5E-03 which exceeded the regulatory acceptable risk of 1 in 10,000 set by US-EPA. The DA rice variety also showed the lowest value while the TB rice variety gave the highest value. Our results indicate that risk assessment can be contribute to screen the pollution safe rice cultivars in paddy fields affected by the mining activity.

휴폐광산 인근 주민에 대한 위해영향을 평가하는데 있어서 벼 품종에 따른 변이를 파악하기 위하여 농경지 토양 및 쌀의 비소, 카드뮴, 구리 및 납의 함량을 분석하였다. 중금속 오염농경지에서 조사된 잠재적인 인체노출 경로로서 오염된 농경지 및 쌀을 통한 경구섭취 및 피부접촉을 통한 품종간 일일평균 인체노출량(ADD)을 산정하였다. 비발암성 위해도 평가로 노출경로별 중금속의 위험비율인 HQ 지수와 모든 노출경로를 총합한 중금속의 위험지수인 HI 값을 US-EPA D/B를 활용하였다. 벼 품종간 HI 지수는 23.6~34.3으로 전품종에서 높은 잠재적 위해성으로 평가되었는데 DA 품종이 가장 낮은 반면 TB 품종이 가장 높은 HI 값을 보였다. 쌀 소비에 따른 비소의 발암성 위해도 평가는 품종간 2.0E-03~3.5E-03을 보여 미국 EPA에서 정한 위해성 기준인 만명 중 한명 이상으로 높게 나타났다. 발암성 위해도에 대한 품종간 비교에서 DA 품종이 가장 낮은 반면 TB 품종이 가장 높은 HI 값을 보였다. 이러한 결과는 위해성 평가가 중금속 오염에 안전한 품종을 선발하는데 유용한 도구로서 활용할 수 있음을 보여준다.

Keywords

References

  1. Arao, T. and Ae, N. 2003. Genotypic variations in cadmium level of rice grain. Soil Sci. Plant Nutr., 49(4):473-479 https://doi.org/10.1080/00380768.2003.10410035
  2. Arao, T., Ae, N., Sugiyama, M. and Takahashi, M. 2003. Genotypic differences in cadmium uptake and distribution in soybeans. Plant and Soil, 251:247-253 https://doi.org/10.1023/A:1023079819086
  3. Korean Food Drug Administration. 2000. The guideline of Cd in polished rice
  4. Korean Ministry of Environment. 1996. Soil Environment Conservation Act
  5. Lee J. S. and Cho H. T. 2004a. Heavy metal contamination and human risk assessment around some abandoned Au-Ag and base metal mine sites in Korea. Proceedings of the 2$^{nd}$ International Conference on Soil Pollution and Remediation. Session Ⅰ. Soil Pollution and Risk Assessment, Nanjing, China
  6. Lee J. S. and Chon H.T. 2004b, Human risk assessment of toxic heavy metals around abandoned metal mine sites. Econ. Environ. Geol., 37(1): 73-86
  7. Lee, J. S., Chon, H. T., and Kim, K. W. 2005. Human risk assessment of As, Cd, Cu, and Zn in the abandoned metal mine site, Environ. Geochem. and Health, 27:185-191 https://doi.org/10.1007/s10653-005-0131-6
  8. Lee, J. S., Kwon, H. H., Shim, Y. S., and Kim, T. H. 2007. Risk assessment of heavy metals in the vinicity of the abandoned metal mine areas, J. of KoSSGE., 12:97-102
  9. Li, Y. M., Chaney, R. F., Schneiter, A. A., and Miller, J. F. 1995. Genotypic variation in kernel cadmium concetration in sunflower germplasm under varying soil conditions. Crop Sci., 35:137-141 https://doi.org/10.2135/cropsci1995.0011183X003500010025x
  10. National Institute of Agricultural Science and Technology. 2000. Analytical method of soil and plant. RDA
  11. US-EPA IRIS DB (hppt://www.epa.gov/iriswebp/iris/index.html)
  12. Yang, J. E., Ok, Y. S., Kim, W. I., and Lee, J. S. 2008. Heavy metal pollution, risk assessment and remediation in paddy soil environment: research and experiences in Korea. In Causes and Effects of Heavy Metal Pollution. Nova Science Publishers, New York, USA