A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect

유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석

  • Received : 2009.05.24
  • Accepted : 2009.08.10
  • Published : 2009.08.30

Abstract

The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

본 논문은 기하학적 비선형성을 가진 보존적 단일 하중 매개변수의 탄성 상태 공간구조의 탄성 분기 좌굴해석을 위한 공간프레임의 정식화, 분기경로 추적을 위한 pin-pointing 및 분기경로 전환알고리즘을 기술하고 있다. 복잡한 좌굴 후 거동특성을 파악하기 위한 본 연구의 공간프레임요소는 오일러리안 좌표계에 의한 유한회전이론으로 강체변형을 계산하였고, 굽힘효과가 고려된 보-기둥식을 적용하여 적은 개수의 요소의 사용으로도 정해를 얻을 수 있도록 하였으며, 후좌굴해석과 같은 고도의 비선형해석을 수행하기 위해 기하강성행렬의 모멘트에 대한 영향을 고려하였다. 분기좌굴에 의한 좌굴후 평형상태인 주경로와 분기경로의 pin-pointing 알고리즘으로 특이점을 계산하였으며, 고유치 및 고유모드를 이용한 본 연구의 수치알고리즘에 의해 분기경로를 추적하였다. 분기좌굴 해석예제로 평면프레임, 평면아치 및 공간돔에 대한 분기좌굴 해석을 수행하여 본문에서 제시한 수치해석법의 정확성 및 적용성을 검증한다.

Keywords

References

  1. 이경수, 한상을 (2009) 공간프레임의 대변형 해석을 위한 오일 러리안 정식화, 대한건축학회 구조계, 25(1), pp.73-80
  2. 한상을, 윤한흠 (2000) 래티스 돔의 다분기 해석을 위한 알고리즘. 대한건축학회. 16(9), pp.3-9
  3. 한상을, 이경수 (2007) 공간구조의 후좌굴 해석에 관한 연구, 대한건축학회 구조계, 23(7), pp.53-60
  4. 한상을, 이경수 (2007) 공간구조의 비선형 탄소성 후좌굴해석에 관한 연구, 대한건축학회 구조계, 23(12), pp.59-68
  5. 細野秀 (1974) 弧長法たよろ彈性挫屈問題の解析, 博士學位論文, 東京大學
  6. Argyris, J.H., Balmer, H., Doltsinis, I. St., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, H.P., Muller, M., Scharpf, D.W. (1979) Finite element method-The natural approach, Computer Methods in Applied Mechanics and Engineering, 17/18, pp.1-106 https://doi.org/10.1016/0045-7825(79)90083-5
  7. Cheng, H., Gupta, K.C. (1989) An historical note on finite rotations, J. Applied Mechanics, 56, pp.139-145 https://doi.org/10.1115/1.3176034
  8. Chu, K.H., Rampetsreiter, R.H. (1972) Large deflection buckling of space frames, J, Struct. Div., ASCE, 98(12), pp.2701-2722
  9. Choong, K.K., Hangai, Y. (1993) Review on methods of bilurcation analysis for geometrically nonlinear structures, Int. Assoc. Shells Spatial Structures(issue dedicated to SE1KEN-IASS Symposium on Nonlinear Analysis and Design for Shell and Spatial Structures), 34(2), pp.133-149
  10. Crisfield, M.A. (1997) Nonliear finite element analysis of solids and structures, 2, Advanced Topics, John Wiley & Sons
  11. Euler, L. (1775) Formulae Generales pro Trans latione Quacunque Corporum Rigiddrum, Novi Commentari Acad. Imp. Petrop., 20, pp.189-207
  12. Fujii, F., Asada, K. (1993) Branch-switching in simple spatial bifurcation models, SEIKEN-1ASS Svmp. on Nonlinear Analysis and Design for Shells and Spatial Structures, Tokyo, pp.515-522
  13. Fujii, F., Ramm, E. (1997) Computational bifurcation theory-path-tracing, pinpointing and path-switching., Engineering Structures, 19, pp.385-392 https://doi.org/10.1016/S0141-0296(96)00094-6
  14. Godstein, H. (1980) Classical Mechanics, Addison-Wesley
  15. Kassimali, A. (1983) Large deflection analysis of elastic-plastic frames., J. Struct. Eng., ASCE 109(8), pp.1869-1886 https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1869)
  16. Kassimali, A., Abbasnia, R. (1991) Large deformation analysis of elastic space frames, J. Struc. Eng., ASCE, 117(7), pp.2067-2087 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:7(2069)
  17. Oran., C. (1973) Tangent stiffnes in space frame, J. Struct. Div., ASCE, pp.987-1001
  18. Riks, E. (1979) An incremental approach to the solution of snapping and buckling problems, Int., J. Solids Structures, 15, pp.529-551 https://doi.org/10.1016/0020-7683(79)90081-7
  19. Riks, E. (1984) Some computational aspects of the stability analysis of nonlinear structures, Computer Methods in Applied Mechanics and Engineering, 47, pp.219-259 https://doi.org/10.1016/0045-7825(84)90078-1
  20. Sabir, A.B., Lock, A.C. (1973) Large deflection, geometrically nonlinear finite element analysis of circular arches, Int. J. Mech. Sci., 15, pp.37 https://doi.org/10.1016/0020-7403(73)90044-1
  21. Shi, G., Atluri, S.N. (1988) Elasto-plastic large deformation analysis of space-frames : a plastichinge and stress-based explicit derivation of tagent stiffness, Int. J. Num. Meth. Eng., 26, pp.589-615 https://doi.org/10.1002/nme.1620260306
  22. Spiller, W.R. (1990) Geometric stiffness matrix for space frames, Computers & Structures, 36(1), pp.29-37 https://doi.org/10.1016/0045-7949(90)90171-W
  23. Wriggers, P., Wagner, W., Miehe, C. (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 70, pp.329-347 https://doi.org/10.1016/0045-7825(88)90024-2