Reliability-based Design Optimization using Multiplicative Decomposition Method

곱분해기법을 이용한 신뢰성 기반 최적설계

  • Received : 2009.05.18
  • Accepted : 2009.07.22
  • Published : 2009.08.30

Abstract

Design optimization is a method to find optimum point which minimizes the objective function while satisfying design constraints. The conventional optimization does not consider the uncertainty originated from modeling or manufacturing process, so optimum point often locates on the boundaries of constraints. Reliability based design optimization includes optimization technique and reliability analysis that calculates the reliability of the system. Reliability analysis can be classified into simulation method, fast probability integration method, and moment-based reliability method. In most generally used MPP based reliability analysis, which is one of fast probability integration method, if many MPP points exist, cost and numerical error can increase in the process of transforming constraints into standard normal distribution space. In this paper, multiplicative decomposition method is used as a reliability analysis for RBDO, and sensitivity analysis is performed to apply gradient based optimization algorithm. To illustrate whole process of RBDO mathematical and engineering examples are illustrated.

최적설계는 설계자가 요구하는 제한조건을 만족시키는 범위에서 목적함수가 최소가 되는 설계점을 찾는 방법이다. 그러나 기존의 최적설계는 설계변수의 불확실성을 고려하지 않아 최적해가 제한조건의 경계에 위치하고, 이것은 모델링과정이나 가공 등으로 인한 오차의 영향을 고려하지 않는 문제점이 있다. 신뢰성 기반 최적설계는 불확실성을 정량화하면서 신뢰도를 계산하는 신뢰도 해석과정과 최적설계 과정을 포함한다. 일반적으로 신뢰성 해석은 크게 추출법, 급속 확률 적분법, 모멘트 기반 신뢰성 해석이 있다. 가장 널리 사용되는 급속 확률 적분법 중 최대 손상 가능점(MPP) 방법은 많은 MPP점이 존재하는 경우 수치적 비용이 증가하는 문제점과 표준 정규분포 공간으로 변환하는 과정에서 제한조건의 비선형성을 증가시켜 큰 오차를 발생시키는 문제점이 있다. 본 논문에서는 RBDO를 수행하기에 앞서 선행되어야 할 신뢰성 해석 방법으로 곱분해기법을 사용하였고, 이로부터 민감도 정보를 유도하여 기울기 기반 최적화 알고리즘을 적용하였다.

Keywords

References

  1. 양영순, 서용석, 이재옥 (1999) 구조 신뢰성 공학, 서울대학교 출판부
  2. Breitung K. (1984) Asymptotic approximations for multi-normal integrals, Journal of Engineering Mechanics Division, ASCE, 110(3), pp.357-366 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:3(357)
  3. Cornell, C.A. (1969) A Probability-based Structural Code, Journal of the American Concrete Institute, 66(12), pp.974-985
  4. Johnson, N.L., Kots, S., Balakrishnan, N. (1994) Continuous Univariate Distributions, Volume
  5. Jung, J.J. (2007) Multiplicative Decomposition Method for Accurate Moment-Based Reliability Analysis, Ph.D. thesis, The Hanyang University
  6. Kiureghian, A.D., Lin, H.Z., Hwang, S.J. (1987) Second Order Reliability Analysis Approximations, Journal of Engineering Mechanics, ASCE, 113(9), pp.1208-1225
  7. Lee, S.H., Kwak, B.M. (2005) Reliability-Based Design Optimization Using Response Surface Augmented Moment Method, Proceedings of the 6th world Congress on Structural and Multidisciplinary Optimization, Reode Janeiro, 3 0 ay-3 June
  8. Rahman, S., Xu, H. (2004) A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics, Probabilistic Engineering Mechanics, 19(4), pp.393-408 https://doi.org/10.1016/j.probengmech.2004.04.003
  9. Sacks, J., Welch, W.J., Mitchell, T,J., Wynn, H.P. (1989) Design and Analysis of Computer Experiments, Statistical Science, 4(4), pp.409-435 https://doi.org/10.1214/ss/1177012413
  10. Seo, H.S., Kwak, B.M. (2002) Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information, International Journal of Production Research, 40(4), pp.931-944 https://doi.org/10.1080/00207540110095709
  11. Stuart, A., Ord, J. K. (1994) Kendall’s Advanced Theory of Statistics, 1, 6th edition. Edward Arnold, London
  12. Youn, B.D., Xi,Z., Wells, L.J., Wang, P. (2006) Enhanced Dimension-Reduction(eDR) Method for Sensitivity-Free Uncertainty Quantification, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 6~8 September, Ports mouth, Virginia