DOI QR코드

DOI QR Code

Efficiency of ceramic bracket debonding with the Er:YAG laser

세라믹 브라켓의 제거 시 Er:YAG 레이저의 효능

  • Suh, Chung-Hwan (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Chang, Na-Young (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Chae, Jong-Moon (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kang, Kyung-Hwa (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 서충환 (원광대학교 치과대학 치과교정학교실) ;
  • 장나영 (원광대학교 치과대학 치과교정학교실) ;
  • 채종문 (원광대학교 치과대학 치과교정학교실) ;
  • 조진형 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실) ;
  • 강경화 (원광대학교 치과대학 치과교정학교실)
  • Received : 2009.03.04
  • Accepted : 2009.05.30
  • Published : 2009.08.30

Abstract

Objective: The aim of this study was to find out whether Er:YAG laser can aid in debonding ceramic brackets, and to see what kind of method will be the most appropriate for debonding. Methods: One hundred and ninety teeth, monocrystalline brackets ($MISO^{TM}$, HT, Ansan-Si, Korea), polycrystalline brackets ($Transcend^{TM}$ series 6000, 3M Untek, Monrovia, CA, USA) and the KEY Laser3 (KavoDental, Biberach, Germany) were used. Experimental groups were classified according to the type of ceramic brackets, and the amount of laser energy (0, 140, 300, 450, 600 mJ). After applying laser on the bracket at two points at 1 pulse each, the shear bond strength was measured. The effect of heat caused by laser was measured at the enamel beneath the bracket and pulp chamber. After measuring the shear bond strength, adhesive residue was evaluated and enamel surface was investigated using SEM. Results: All ceramic bracket groups showed a significant decrease in shear bond strength as the laser energy increased. The greatest average temperature change was $3.78^{\circ}C$ on the enamel beneath the bracket and $0.9^{\circ}C$ on the pulp chamber. Through SEM, crater shape holes caused by the laser was seen on the enamel and adhesive surfaces. Conclusions: If laser is applied on ceramic brackets for debonding, 300 - 450 mJ of laser energy will be safe and efficient for monocrystalline brackets ($MISO^{TM}$), and about 450 mJ for polycrystalline brackets ($Transcend^{TM}$ series 6000).

본 연구에서는 세라믹 브라켓 제거에 Er:YAG 레이저 조사가 도움이 되는지 알아보고, 브라켓 제거에 적합한 레이저 조사 방법을 연구하였으며, 또 이렇게 적용된 레이저가 치수와 법랑질에 손상을 주는지도 알아보았다. 총 190개의 치아, 단결정 세라믹 브라켓(MISO), 다결정 세라믹 브라켓(Transcend series 6000)과 KEY Laser3를 사용하였다. 실험군은 세라믹 브라켓의 종류(단결정, 다결정)와 레이저의 에너지(140, 300, 450, 600 mJ)에 따라 분류하였으며, 레이저를 브라켓당 두 곳에 1펄스씩 조사하고, 전단 강도를 측정하였다. 대조군은 레이저를 조사하지 않는 군으로 하였다. 레이저 조사에 의한 열 효과는 브라켓 하방 법랑질과 치수강에서 측정하였으며, 전단 강도 측정 후 치면에 남아있는 접착제의 양을 접착제 잔류 지수(adhesive remnant index)를 이용하여 평가하였다. 레이저 조사로 인한 접착제의 파괴 양상과 법랑질 표면 변화를 주사전자현미경으로 관찰하였다. 모든 세라믹 브라켓군에서 레이저 에너지가 증가할수록 전단 강도는 유의하게 감소하였다. 또한, 브라켓 하방 법랑질에서 최대 온도 변화는 평균 $3.78^{\circ}C$ 상승에 그쳤으며, 치수강에서 최대 온도 변화는 평균 $0.9^{\circ}C$ 상승에 그쳤다. 주사전자현미경을 이용한 법랑질과 접착제 단면 관찰에서 접착제 표면이 레이저에 의해 붕괴되어 분화구 모양의 구덩이로 관찰되었으며, 일부 시편에서 약 $10\;-\;30{\mu}m$의 법랑질 손상이 발견되었다. Transbond XT로 부착된 단결정 도재 브라켓(MISO)의 디본딩에 Er:YAG 레이저를 이용할 경우, 300 - 450 mJ의 레이저 에너지를, 그리고 다결정 도재 브라켓(Transcend series 6000)의 경우는 450 mJ 정도의 에너지를 사용하는 것이 효과적이고 안전할 것으로 생각된다.

Keywords

References

  1. Bishara SE. Ceramic bracket and the need to develop national standards. Am J Orthod Dentofacial Orthop 2000;117:595-7 https://doi.org/10.1016/S0889-5406(00)70212-5
  2. Arici S, Minors C. The force levels required to mechanically debond ceramic brackets: an in vitro comparative study. Eur J Orthod 2000;22:327-34 https://doi.org/10.1093/ejo/22.3.327
  3. Bishara SE, Trulove TS. Comparisons of different debonding techniques for ceramic brackets: an in-vitro study. Part 1. Background and methods. Am J Orthod Dentofacial Orthop 1990;98:145-53 https://doi.org/10.1016/0889-5406(90)70008-Z
  4. Storm ER. Debonding ceramic brackets. J Clin Orthod 1990; 24:91-4
  5. Bishara SE. Trulove TS. Comparisons of different debonding techniques for ceramic brackets: an in-vitro study. Part II. Findings and clinical implications. Am J Orthod Dentofacial Orthop 1990;98:263-73 https://doi.org/10.1016/S0889-5406(05)81604-X
  6. Krell KV, Courey JM, Bishara SE. Orthodontic bracket removal using conventional and ultrasonic debonding techniques, enamel loss, and time requirements. Am J Orthod Dentofacial Orthop 1993;103:258-66 https://doi.org/10.1016/0889-5406(93)70007-B
  7. Rueggeberg FA, Lockwood P. Thermal debracketing of orthodontic resins. Am J Orthod Dentofacial Orthop 1990;98:56-65 https://doi.org/10.1016/0889-5406(90)70032-8
  8. Larmour CJ, McCabe JF, Gordon PH. An ex vivo investigation into the effects of chemical solvents on the debond behaviour of ceramic orthodontic brackets. Br J Orthod 1998;25:35-9 https://doi.org/10.1093/ortho/25.1.35
  9. Strobl K, Bahns TL, Willham L, Bishara SE, Stwalley WC. Laser-aided debonding of orthodontic ceramic brackets. Am J Orthod Dentofacial Orthop 1992;101:152-8 https://doi.org/10.1016/0889-5406(92)70007-W
  10. Tocchio RM, Willham PT, Mayer FJ, Standing KG. Laser debonding of ceramic orthodontic brackets. Am J Orthod Dentofacial Orthop 1993;103:155-62 https://doi.org/10.1016/S0889-5406(05)81765-2
  11. Mimura H, Deguchi T, Obata A, Yamagishi T, Ito M. Comparison of different bonding materials for laser debonding. Am J Orthod Dentofacial Orthop 1995;108:267-73 https://doi.org/10.1016/S0889-5406(95)70020-X
  12. Rickabaugh JL, Marangoni RD, McCaffrey K. Ceramic bracket debonding with the carbon dioxide laser. Am J Orthod Dentofacial Orthop 1996;110:388-93 https://doi.org/10.1016/S0889-5406(96)70040-9
  13. Ma T, Marangoni RD, Flint W. In vitro comparison of debonding force and intrapulpal temperature changes during ceramic orthodontic bracket removal using a carbon dioxide laser. Am J Orthod Dentofacial Orthop 1997;111:203-10 https://doi.org/10.1016/S0889-5406(97)70217-8
  14. Obata A, Tsumura T, Niwa K, Ashizawa Y, Deguchi T, Ito M. Super pulse CO2 laser for bracket bonding and debonding. Eur J Orthod 1999;21:193-8 https://doi.org/10.1093/ejo/21.2.193
  15. Kim YJ, Lim SH, Yoon YJ, Park JC, Kim KW. Histologic changes of pulpal tissue after laser-aided ceramic bracket debonding. Korean J Orthod. 2004;34:343-9
  16. Hayakawa K. Nd:YAG laser for debonding ceramic orthodontic brackets. Am J Orthod Dentofacial Orthop 2005;128:638-47 https://doi.org/10.1016/j.ajodo.2005.03.018
  17. Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dent Clin North Am 2004;48:751-70 https://doi.org/10.1016/j.cden.2004.05.003
  18. Guttenberg SA, Emery RW 3rd. Laser physics and tissue interaction. Oral Maxillofacial Surg Clin North Am 2004;16:143-7 https://doi.org/10.1016/j.coms.2004.02.008
  19. Masato M. CO2 laser technique. Tokyo: Tohan Co; 2001. p. 2-23
  20. Moritz AF, Beer F, Goharkhay K, Schoop U, Strassl M. Oral laser application. Illinois: Quintessence Pub Co; 2007. p. 38-55
  21. International Standards Organization. ISO/TR 106/SC 1/WG 11. Dentistry: Dental materials - Testing of adhesive to tooth structure. 2003
  22. Graber TM, Eliades T, Athanasiou AA. Risk management in orthodontics. 1st ed. Illinois: Quintessence Pub Co; 2003. p. 20-42
  23. Chirila TV, Constable IJ, van Saarloos PP, Barrett GD. Laserinduced damage to transparent polymers: chemical effect of short-pulpsed (Q-switched) Nd:YAG laser radiation on ophthalmic acrylic biomaterials. I. A review. Biomaterials 1990; 11:305-12
  24. Eliades T, Johnston WM, Eliades G. Direct light transmittance through ceramic brackets. Am J Orthod Dentofacial Orthop 1995;107:11-9 https://doi.org/10.1016/S0889-5406(95)70152-4
  25. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 1965;19:515-30 https://doi.org/10.1016/0030-4220(65)90015-0
  26. Chang JC, Wilder-Smith P. Laser-induced thermal events in empty and pulp-filled dental pulp chambers. Lasers Surg Med 1998;22:46-50 https://doi.org/10.1002/(SICI)1096-9101(1998)22:1<46::AID-LSM11>3.0.CO;2-6
  27. Attrill DC, Davies RM, King TA, Dickinson MR, Blinkhorn AS. Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J Dent 2004;32:35-40 https://doi.org/10.1016/S0300-5712(03)00137-4
  28. Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics. 4th ed. St Luis: Mosby Co; 2007. p. 415
  29. Delfino CS, Souza-Zaroni WC, Corona SAM, P$\acute{e}$cora JD, Palma-Dibb RG. Effect of Er:YAG laser energy on the morphology of enamel/adhesive system interface. Applied Surface Science 2006;252:8476-81 https://doi.org/10.1016/j.apsusc.2005.11.056
  30. Pus MD, Way DC. Enamel loss due to orthodontic bonding with filled and unfilled resins using various clean-up techniques. Am J Orthod 1980;77:269-83 https://doi.org/10.1016/0002-9416(80)90082-2
  31. Al Shamsi AH, Cunningham LJ, Lamey PJ, Lynch E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: an in-vitro study. Am J Orthod Dentofacial Orthop 2007;131:301.e9- 301.e15 https://doi.org/10.1016/j.ajodo.2006.01.026

Cited by

  1. 브라켓 부착을 위한 변형된 레이저 부식법 vol.40, pp.2, 2010, https://doi.org/10.4041/kjod.2010.40.2.87
  2. Comparison of Different Energy Levels of Er:YAG Laser Regarding Intrapulpal Temperature Change During Safe Ceramic Bracket Removal vol.36, pp.4, 2009, https://doi.org/10.1089/pho.2017.4397