DOI QR코드

DOI QR Code

LC-MS/MS Profiling-Based Secondary Metabolite Screening of Myxococcus xanthus

  • Kim, Ji-Young (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University) ;
  • Choi, Jung-Nam (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Pil (Department of Biotechnology, Catholic University of Korea) ;
  • Sok, Dai-Eun (Chungnam National University) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering/Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Choong-Hwan (Functional Metabolomics Laboratory, Division of Bioscience and Biotechnology, Konkuk University)
  • Received : 2007.11.19
  • Accepted : 2008.07.31
  • Published : 2009.01.31

Abstract

Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

Keywords

References

  1. Bino, R. J., R. D. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, et al. 2004. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9: 418-424 https://doi.org/10.1016/j.tplants.2004.07.004
  2. Frykman, S., H. Tsuruta, J. Galazzo, and P. Licari. 2006. Characterization of product capture resin during microbial cultivations. J. Ind. Microbiol. Biotechnol. 33: 445-453 https://doi.org/10.1007/s10295-006-0088-1
  3. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 35: 1454-1459 https://doi.org/10.7164/antibiotics.35.1454
  4. Gerth, K., R. Jansen, G. Reifenstahl, G. Hofle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties and mechanism of action. J. Antibiot. 36: 1150-1156 https://doi.org/10.7164/antibiotics.36.1150
  5. Jansen, R., G. Reifenstahl, K. Gerth, H. Reichenbach, and G. Hofle. 1983. Myxalamide A, B, C, and D, eine gruppe homologer antibiotika aus Myxococcus xanthus Mxx12 (Myxobacteriales). Liebigs Ann. Chem. 1983: 1081-1095 https://doi.org/10.1002/jlac.198319830702
  6. Kim, Y. S., W. C. Bae, and S. J. Baek. 2003. Bioactive substances from myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 1-12
  7. Krug, D., G. Zurek, O. Revermann, M. Vos, G. J. Velicer, and R. Müller. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: A study of intraspecific diversity. Appl. Environ. Microbiol. 74: 3058-3068 https://doi.org/10.1128/AEM.02863-07
  8. Kunze, B., N. Bedorf, W. Kohl, G. H$\ddot{o}$fle, and H. Reichenbach. 1989. Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J. Antibiot. 42: 14-17 https://doi.org/10.7164/antibiotics.42.14
  9. Meiser, P., H. B. Bode, and R. Müller. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103: 19128-19133 https://doi.org/10.1073/pnas.0606039103
  10. Newman, D. J., G. M. Cragg, and K. M. Snader. 2000. The influence of natural products on drug discovery. Nat. Prod. Rep. 17: 215-234 https://doi.org/10.1039/a902202c
  11. Park, S., B. Lee, J. Kim, C. Lee, E. Jang, and K. Cho. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Kor. J. Microbiol. Biotechnol. 32: 218-223
  12. Reichenbach, H. and G. Hofle. 1993. Production of bioactive secondary metabolites, pp. 347-397 In M. Dworkin and D. Kaiser (eds.). Myxobacteria. American Society for Microbiology, Washington, DC
  13. Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites, pp. 149-179. In S. Grabley and R. Thiericeke (eds.). Drug Discovery from Nature. Springer Verlag, Berlin
  14. Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). The Procaryotes, 2nd Ed. Springer-Verlag, New York
  15. Rochfort, S. 2005. Metabolomics reviewed: A new 'Omics' platform technology for systems biology and implications for natural products research. J. Nat. Prod. 68: 1813-1820 https://doi.org/10.1021/np050255w
  16. Silas, G. V. B., S. Mas, M. Åkesson, J. Smedsgaard, and J. Nielsen. 2005. Mass spectrometry in metabolome analysis. Mass Spect. Rev. 24: 613-346 https://doi.org/10.1002/mas.20032
  17. Want, J. E., B. F. Cravatt, and G. Siuzdak. 2005. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6: 1941-1951 https://doi.org/10.1002/cbic.200500151

Cited by

  1. Growing trend of CE at the omics level: The frontier of systems biology vol.31, pp.1, 2009, https://doi.org/10.1002/elps.200900410
  2. Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling vol.21, pp.1, 2009, https://doi.org/10.4014/jmb.1008.08018
  3. The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin vol.7, pp.9, 2009, https://doi.org/10.1371/journal.pone.0044673
  4. Integrated Metabolomics Approach Facilitates Discovery of an Unpredicted Natural Product Suite from Streptomyces coelicolor M145 vol.8, pp.9, 2009, https://doi.org/10.1021/cb4002798
  5. The lethal cargo of Myxococcus xanthus outer membrane vesicles vol.5, pp.None, 2014, https://doi.org/10.3389/fmicb.2014.00474
  6. A metabolomics guided exploration of marine natural product chemical space vol.12, pp.9, 2009, https://doi.org/10.1007/s11306-016-1087-5
  7. Unique identifiers for small molecules enable rigorous labeling of their atoms vol.4, pp.4, 2009, https://doi.org/10.1038/sdata.2017.73
  8. A Droplet Microfluidics Based Platform for Mining Metagenomic Libraries for Natural Compounds vol.8, pp.9, 2009, https://doi.org/10.3390/mi8080230
  9. Omics Studies Revealed the Factors Involved in the Formation of Colony Boundary in Myxococcus xanthus vol.8, pp.6, 2009, https://doi.org/10.3390/cells8060530
  10. Supercritical Fluid Extraction Enhances Discovery of Secondary Metabolites from Myxobacteria vol.92, pp.23, 2009, https://doi.org/10.1021/acs.analchem.0c02995
  11. The dynamic linkage between phytotoxicity and metabolites in Wedelia trilobata soils vol.21, pp.2, 2021, https://doi.org/10.1111/wbm.12222