References
- Bino, R. J., R. D. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, et al. 2004. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9: 418-424 https://doi.org/10.1016/j.tplants.2004.07.004
- Frykman, S., H. Tsuruta, J. Galazzo, and P. Licari. 2006. Characterization of product capture resin during microbial cultivations. J. Ind. Microbiol. Biotechnol. 33: 445-453 https://doi.org/10.1007/s10295-006-0088-1
- Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 35: 1454-1459 https://doi.org/10.7164/antibiotics.35.1454
- Gerth, K., R. Jansen, G. Reifenstahl, G. Hofle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties and mechanism of action. J. Antibiot. 36: 1150-1156 https://doi.org/10.7164/antibiotics.36.1150
- Jansen, R., G. Reifenstahl, K. Gerth, H. Reichenbach, and G. Hofle. 1983. Myxalamide A, B, C, and D, eine gruppe homologer antibiotika aus Myxococcus xanthus Mxx12 (Myxobacteriales). Liebigs Ann. Chem. 1983: 1081-1095 https://doi.org/10.1002/jlac.198319830702
- Kim, Y. S., W. C. Bae, and S. J. Baek. 2003. Bioactive substances from myxobacteria. Kor. J. Microbiol. Biotechnol. 31: 1-12
- Krug, D., G. Zurek, O. Revermann, M. Vos, G. J. Velicer, and R. Müller. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: A study of intraspecific diversity. Appl. Environ. Microbiol. 74: 3058-3068 https://doi.org/10.1128/AEM.02863-07
-
Kunze, B., N. Bedorf, W. Kohl, G. H
$\ddot{o}$ fle, and H. Reichenbach. 1989. Myxochelin A, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales). Production, isolation, physico-chemical and biological properties. J. Antibiot. 42: 14-17 https://doi.org/10.7164/antibiotics.42.14 - Meiser, P., H. B. Bode, and R. Müller. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103: 19128-19133 https://doi.org/10.1073/pnas.0606039103
- Newman, D. J., G. M. Cragg, and K. M. Snader. 2000. The influence of natural products on drug discovery. Nat. Prod. Rep. 17: 215-234 https://doi.org/10.1039/a902202c
- Park, S., B. Lee, J. Kim, C. Lee, E. Jang, and K. Cho. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Kor. J. Microbiol. Biotechnol. 32: 218-223
- Reichenbach, H. and G. Hofle. 1993. Production of bioactive secondary metabolites, pp. 347-397 In M. Dworkin and D. Kaiser (eds.). Myxobacteria. American Society for Microbiology, Washington, DC
- Reichenbach, H. and G. Hofle. 1999. Myxobacteria as producers of secondary metabolites, pp. 149-179. In S. Grabley and R. Thiericeke (eds.). Drug Discovery from Nature. Springer Verlag, Berlin
- Reichenbach, H. and M. Dworkin. 1992. The myxobacteria, pp. 3416-3487. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.). The Procaryotes, 2nd Ed. Springer-Verlag, New York
- Rochfort, S. 2005. Metabolomics reviewed: A new 'Omics' platform technology for systems biology and implications for natural products research. J. Nat. Prod. 68: 1813-1820 https://doi.org/10.1021/np050255w
- Silas, G. V. B., S. Mas, M. Åkesson, J. Smedsgaard, and J. Nielsen. 2005. Mass spectrometry in metabolome analysis. Mass Spect. Rev. 24: 613-346 https://doi.org/10.1002/mas.20032
- Want, J. E., B. F. Cravatt, and G. Siuzdak. 2005. The expanding role of mass spectrometry in metabolite profiling and characterization. Chembiochem 6: 1941-1951 https://doi.org/10.1002/cbic.200500151
Cited by
- Growing trend of CE at the omics level: The frontier of systems biology vol.31, pp.1, 2009, https://doi.org/10.1002/elps.200900410
- Chemotaxonomy of Trichoderma spp. Using Mass Spectrometry-Based Metabolite Profiling vol.21, pp.1, 2009, https://doi.org/10.4014/jmb.1008.08018
- The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin vol.7, pp.9, 2009, https://doi.org/10.1371/journal.pone.0044673
- Integrated Metabolomics Approach Facilitates Discovery of an Unpredicted Natural Product Suite from Streptomyces coelicolor M145 vol.8, pp.9, 2009, https://doi.org/10.1021/cb4002798
- The lethal cargo of Myxococcus xanthus outer membrane vesicles vol.5, pp.None, 2014, https://doi.org/10.3389/fmicb.2014.00474
- A metabolomics guided exploration of marine natural product chemical space vol.12, pp.9, 2009, https://doi.org/10.1007/s11306-016-1087-5
- Unique identifiers for small molecules enable rigorous labeling of their atoms vol.4, pp.4, 2009, https://doi.org/10.1038/sdata.2017.73
- A Droplet Microfluidics Based Platform for Mining Metagenomic Libraries for Natural Compounds vol.8, pp.9, 2009, https://doi.org/10.3390/mi8080230
- Omics Studies Revealed the Factors Involved in the Formation of Colony Boundary in Myxococcus xanthus vol.8, pp.6, 2009, https://doi.org/10.3390/cells8060530
- Supercritical Fluid Extraction Enhances Discovery of Secondary Metabolites from Myxobacteria vol.92, pp.23, 2009, https://doi.org/10.1021/acs.analchem.0c02995
- The dynamic linkage between phytotoxicity and metabolites in Wedelia trilobata soils vol.21, pp.2, 2021, https://doi.org/10.1111/wbm.12222