DOI QR코드

DOI QR Code

Diverse Antibacterial Activity of Pectobacterium carotovorum subsp. carotovorum Isolated in Korea

  • Roh, Eun-Jung (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Seung-Don (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Lee, Yong-Hoon (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Ra, Dong-Su (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Choi, Jae-Hyuk (Department of Molecular Science and Technology, Ajou University) ;
  • Moon, Eun-Pyo (Department of Biological Science, Ajou University) ;
  • Heu, Sung-Gi (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
  • Received : 2008.03.17
  • Accepted : 2008.06.17
  • Published : 2009.01.31

Abstract

Fifty-four Pectobacterium carotovorum subsp. carotovorum strains isolated in Korea were characterized by a spectrum of antibacterial activities against 7 indicator strains chosen to represent various regions and host plants. All P. carotovorum subsp. carotovorum isolates tested could be grouped into 4 classes depending on the pattern of antibacterial substance production. All tested strains had DNA fragment(s) homologous to the genes encoding carotovoricin and 21 of them had genes homologous to DNA invertase. Sixteen strains had genes homologous to the genes encoding carocin S1. Several isolates produced antibacterial substances active against strains in Brenneria, Pantoea, and Pectobacterium genera that belonged formerly to the genus Erwinia. Strains in Pseudomonas or Xanthomonas sp. were not sensitive to the antibacterial substances produced by P. carotovorum subsp. carotovorum, except for X. albilineans that was sensitive to antibacterial substances produced by most strains in P. carotovorum subsp. carotovorum and P. betavasculorum KACC10056. These results demonstrated the diverse patterns of antibacterial substance production and the possibility of the existence of new antibacterial substance(s) produced by P. carotovorum subsp. carotovorum isolated in Korea.

Keywords

References

  1. Abrehem, K. and I. Zamiri. 1985. Purification and characterization of a Corynebacterium ulcerans bacteriocin (ulceracin 378). J. Gen. Microbiol. 131: 707-713
  2. Brown, E. W., R. M. Davis, C. Gouk, and T. van der Zwet. 2000. Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int. J. Syst. Evol. Microbiol. 50: 2057-2068 https://doi.org/10.1099/00207713-50-6-2057
  3. Chuang, D. Y., Y. C. Chien, and H. P. Wu. 2007. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J. Bacteriol. 189: 620-626 https://doi.org/10.1128/JB.01090-06
  4. Gardan, L., C. Gouy, R. Christen, and R. Samson. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53: 381-391 https://doi.org/10.1099/ijs.0.02423-0
  5. Guasch, J. F., J. Enfedaque, S. Ferrer, D. Gargallo, and M. Regue. 1995. Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Res. Microbiol. 146: 477-483 https://doi.org/10.1016/0923-2508(96)80293-2
  6. Hauben, L., E. R. Moore, L. Vauterin, M. Steenackers, J. Mergaert, L. Verdonck, and J. Swings. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21: 384-397 https://doi.org/10.1016/S0723-2020(98)80048-9
  7. Heu, S., J. Oh, Y. Kang, S. Ryu, S. K. Cho, Y. Cho, and M. Cho. 2001. gly Gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl. Environ. Microbiol. 67: 4105-4110 https://doi.org/10.1128/AEM.67.9.4105-4110.2001
  8. Kerr, A. and M. E. Tate. 1984. Agrocins and the biological control of crown gall. Microbiol. Sci. 1: 1-4
  9. Lavermicocca, P., S. L. Lonigro, F. Valerio, A. Evidente, and A. Visconti. 2002. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 68: 1403-1407 https://doi.org/10.1128/AEM.68.3.1403-1407.2002
  10. McClure, N. C., A. R. Ahmadi, and B. G. Clare. 1998. Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: A study of factors involved in biological control of crown gall disease. Appl. Environ. Microbiol. 64: 3977-3982
  11. Morgan, S., R. P. Ross, and C. Hill. 1995. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M. Appl. Environ. Microbiol. 61: 2995-3001
  12. Nguyen, A. H., T. Tomita, M. Hirota, T. Sato, and Y. Kamio. 1999. A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci. Biotechnol. Biochem. 63: 1360-1369 https://doi.org/10.1271/bbb.63.1360
  13. Nguyen, H. A., T. Tomita, M. Hirota, J. Kaneko, T. Hayashi, and Y. Kamio. 2001. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. J. Bacteriol. 183: 6274-6281 https://doi.org/10.1128/JB.183.21.6274-6281.2001
  14. Pugsley, A. P. 1984. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol. Sci. 1: 168-175
  15. Riley, M. A. 1998. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32: 255-278 https://doi.org/10.1146/annurev.genet.32.1.255
  16. Riley, M. A. and D. M. Gordon. 1999. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7: 129-133 https://doi.org/10.1016/S0966-842X(99)01459-6
  17. Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117-137 https://doi.org/10.1146/annurev.micro.56.012302.161024
  18. Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  19. Sano, Y., H. Matsui, M. Kobayashi, and M. Kageyama. 1993. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J. Bacteriol. 175: 2907-2916 https://doi.org/10.1128/jb.175.10.2907-2916.1993
  20. Schroth, M. N. and J. G. Hancock. 1981. Selected topics in biological control. Annu. Rev. Microbiol. 35: 453-476 https://doi.org/10.1146/annurev.mi.35.100181.002321
  21. Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722-756
  22. Yamada, K., M. Hirota, Y. Niimi, H. A. Nguyen, Y. Takahara, Y. Kamio, and J. Kaneko. 2006. Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhi prophage. Biosci. Biotechnol. Biochem. 70: 2236-2247 https://doi.org/10.1271/bbb.60177

Cited by

  1. 박테리오신을 분비하는 비병원성 돌연변이주에 의한 무름병 방제 효과 vol.16, pp.2, 2009, https://doi.org/10.5423/rpd.2010.16.2.136
  2. 무름병에 감수성인 애기장대 돌연변이체 Atstp1 선발 vol.16, pp.3, 2009, https://doi.org/10.5423/rpd.2010.16.3.312
  3. Biocontrol of Pectobacterium carotovorum subsp. carotovorum Using Bacteriophage PP1 vol.23, pp.8, 2009, https://doi.org/10.4014/jmb.1304.04001
  4. Screening bactericidal effect of Pectobacterium carotovorum subsp. carotovorum strains against causal agent of potato soft rot vol.56, pp.2, 2009, https://doi.org/10.1002/jobm.201500482
  5. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7 vol.14, pp.1, 2009, https://doi.org/10.1089/fpd.2016.2192
  6. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria vol.14, pp.5, 2009, https://doi.org/10.1089/fpd.2016.2243
  7. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria vol.15, pp.5, 2009, https://doi.org/10.1089/fpd.2017.2357
  8. Control of Foodborne Pathogenic Bacteria by Endophytic Bacteria Isolated from Ginkgo biloba L. vol.16, pp.10, 2009, https://doi.org/10.1089/fpd.2018.2496