DOI QR코드

DOI QR Code

Antihyperlipidemic and Glycemic Control Effects of Mycelia of Inonotus obliquus Including Protein-bound Polysaccharides Extract in C57BL/6J Mice

C57BL/6J Mice에서 단백다당체 함유 차가버섯 균사체의 지질개선 및 혈당조절효과

  • Kim, Min-A (Dept. of Food Science and Human Nutrition, Chonbuk National University) ;
  • Jeong, Yong-Seob (Dept. of Biotechnology, Chonbuk National University) ;
  • Chun, Gei-Taek (Dept. of Molecular Bioscience, Kangwon National University) ;
  • Cha, Youn-Soo (Dept. of Food Science and Human Nutrition, Chonbuk National University)
  • 김민아 (전북대학교 식품영양학과) ;
  • 정용섭 (전북대학교 응용생물공학부) ;
  • 전계택 (강원대학교 분자생명과학과) ;
  • 차연수 (전북대학교 식품영양학과)
  • Published : 2009.06.30

Abstract

The antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including protein-bound polysaccharides extract were investigated. In high fat diet-induced obese C57BL/6J mice, the mycelia of Inonotus obliquus including protein-bound polysaccharides extract showed significant decrease in epididymal fat tissue weight, blood triglyceride and VLDL level, triglyceride and total cholesterol level in liver, serum insulin and HOMA-IR level and AUC. Oral glucose tolerance test glucose level reduction were 4.9% (M150L; ${\beta}$-glucan 1.303 mg/kg bw), 9.5% (M150; ${\beta}$-glucan 2.606 mg/kg bw) after 180 min of glucose loading compared to H-C group. Besides, the mycelia of Inonotus obliquus including protein-bound polysaccharides extract treatment significantly increased glycogen contents in liver and adiponectin level in high fat diet-induced obese mice. In conclusion, the results showed that the mycelia of Inonotus obliquus including protein-bound polysaccharides extract possesses significant antihyperlipidemic and glycemic control effects in C57BL/6J mice.

본 연구는 단백다당체 함유 차가버섯 균사체 추출물 보강이 고지방식이로 비만이 유도되어 2형 당뇨 특성을 나타내는 C57BL/6J mice에서 지질수준 개선 및 혈당조절에 미치는 영향을 알아보고자 하였다. 실험동물은 정상 대조군 (N-C), 고지방 대조군(H-C), 고지방식이+저농도 균사체 추출물 투여군(M150L, 1 mL/kg bw, ${\beta}$-glucan 1.303 mg), 고지방식이+균사체 추출물 투여군(M150, 2 mL/kg bw, ${\beta}$-glucan 2.606 mg), 고지방식이+고순도 단백다당체 투여군(PP, 200 mg/kg bw), 고지방식이+메시마 투여군(M, 200 mg/kg bw) 6군으로 나누어 사육하였으며 연구결과는 다음과 같다. 부고환 지방은 차가버섯 균사체 추출물 투여 농도의존적으로 유의적인 감소를 나타냈다. 혈중 중성지방 및 VLDL에서 차가버섯 균사체 투여군(M150)은 고지방 대조군(H-C)보다 각각 유의적으로 감소하였고, 간 조직의 중성지방 농도는 고지방 대조군(H-C)보다 차가버섯 균사체 투여 실험군(M150L, M150)이 각각 26.8%, 30.9%, 총 콜레스테롤은 각각 65.5%, 61.9% 낮아져 유의적으로 감소하였다. 경구당부하 검사 결과 포도당 투여 3시간 후의 혈당이 고지방 대조군(H-C)보다 저농도 차가버섯 균사체 투여군(M150L) 4.9%, 차가버섯 균사체 투여군(M150) 9.5% 감소하였다. 혈당반응면적 또한 차가버섯 균사체 투여군(M150)에서 유의한 수준으로 낮았다. 혈중 인슐린 및 HOMA-IR 수준은 차가버섯 균사체 투여 실험군(M150L, M150)에서 고지방 대조군(H-C)보다 유의적으로 감소되었다. 간 중 글리코겐은 고지방 대조군(H-C)에서 글리코겐 합성이 저하된 반면 차가버섯 균사체 투여 실험군(M150L, M150)에서는 유의적으로 증가하였다. 혈중 아디포넥틴은 고지방 대조군(H-C)보다 차가버섯 균사체 투여군(M150)에서 유의적으로 높아졌다. 결론적으로, 단백다당체 함유 차가버섯 균사체 추출물이 식이 유도 비만/당뇨 모델인 C57BL/6J mice의 지질수준 개선 및 혈당조절에 긍정적인 영향을 미치고 있어 이를 이용한 기능성식품으로의 개발 가능성이 높다고 사료된다.

Keywords

References

  1. Lee KW. 2005. The importance of lifestyle in the prevention and treatment of diabetes. J Korean Med Assoc 48: 703-706 https://doi.org/10.5124/jkma.2005.48.8.703
  2. Kim JS, Park GS, Lee YY, Park DJ, Shin CS, Park KS, Kim SY, Cho BY, Lee HK, Koh CS, Kim HK, Park YS, Kwon SJ. 1998. The characteristics of insulin-resistance syndrome in the Korean population. J Korean Diabetes Assoc 22: 84-92
  3. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Porte D Jr, Schwartz MW. 1999. Reduced $\beta$/TEX>-cell function contributes to impaired glucose tolerance in dogs made obese by high-fat feeding. Am J Physiol Endocrinol Metab 277: E659-E667
  4. Steven EK, Rebecca LH, Kristina MU. 2006. Mechanisms liking obesity to insulin resistance and type 2 diabetes. Nature 444: 840-846 https://doi.org/10.1038/nature05482
  5. Park MJ. 2005. Recent advances in regulating energy homeostasis and obesity. Korean J Pediatr 48: 126-137
  6. Trayhurn P. 2005. Endocrine and signaling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184: 285-293 https://doi.org/10.1111/j.1365-201X.2005.01468.x
  7. Fasshauer M, Paschke R. 2003. Regulation of adipokines and insulin resistance. Diabetologia 46: 1594-1603 https://doi.org/10.1007/s00125-003-1228-z
  8. Park JY, Lee KU, Kim CH, Kim HK, Hong SK, Park KS, Lee HK, Min HK. 1997. Past and current obesity in Koreans with non-insulin-dependent diabetes mellitus. Diabetes Res Clinl Pract 35: 49-56 https://doi.org/10.1016/S0168-8227(96)01363-0
  9. World Health Organization. 2008. http://www.who.int/en/
  10. Kim YO, Han SB, Lee HW, Ahn HJ, Yoon YD, Jung JK, Kim HM, Shin CS. 2005. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci 77: 2438-2456 https://doi.org/10.1016/j.lfs.2005.02.023
  11. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclerc S, Meijer L. 1999. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.:Fr.) Pil. (Aphyllophoromycetideae). Int J Med Mushrooms 1: 301-316 https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  12. Hwang YJ, Noh GW, Kim SH. 2003. Effect of Inonotus obliquus extracts on proloferation and caspase-3 activity in human gastro-intestinal cancer cell lines. Korean J Nutr 36: 18-23
  13. Cha JY, Jeon BS, Park JW, Moon JC, Cho YS. 2004. Effect of fermented compositions containing Inonotus obliquus with Houttuynia cordata on growth of human AGS gastric and HCT-15 colon cancer cells. J Appl Biochem 47: 202-207
  14. Cui Y, Kim DS, Park KC. 2005. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol 96: 79-85 https://doi.org/10.1016/j.jep.2004.08.037
  15. Cha JY, Jun BS, Lee CH, Yoo KS, Moon JC, Cho YS. 2005. Hypoglycemic and antioxidative effects of fermented Chaga mushroom (Inonotus obliquus) on streptozotocin-induced diabetic rats. J Life Sci 15: 809-818 https://doi.org/10.5352/JLS.2005.15.5.809
  16. Ham SS, Oh SW, Kim YK, Shin KS, Chang HY, Chung GH. 2003. Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. J Food Sci Nutr 32: 1088-1094 https://doi.org/10.3746/jkfn.2003.32.7.1088
  17. Cha JY, Jun BS, Yoo KS, Hahm JR, Cho YS. 2006. Fermented Chaga mushroom (Inonotus obliquus) effects on hypolipidemia and hepatoprotection in Otsuka Long- Evans Tokushima Fatty (OLETF) rats. Food Sci Biotechnol 15: 122-127
  18. Ok HH. 2007. Effects of Inonotus obliquus extract on blood glucose levels in genetically diabetic mice. Korean J Nutr 40: 601-605
  19. Yang BK, Cho KY, Wilson MA, Song CH. 2005. Effects of Inonotus obliquus mycelia on the level of plasma glucose and lipids in streptozotocin-induced diabetic rats. Korean J Mycology 33: 64-68 https://doi.org/10.4489/KJM.2005.33.2.064
  20. 박흥제, 김영진, 이대수. 2003. 버섯균사체와 균사배양액 유래의 기능성 다당류의 추출법 및 추출물을 이용한 기능성 차또는/및 식품의 제조방법. 대한민국특허청 No. 10-2003-0072417
  21. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH. 2008. Antihyperglycemic and actilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol 118: 7-13 https://doi.org/10.1016/j.jep.2008.02.030
  22. Choi KH. 2005. Effects of medium compositions on the mycelial growth of Inonotus obliquus. Korean J Chem Eng 43: 419-424
  23. Kim YO, Park HW, Kim JH, Lee JY, Moon SH, Shin CS. 2006. Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci 79: 72-80 https://doi.org/10.1016/j.lfs.2005.12.047
  24. Rao R, Hao CM, Redha R, Wasserman DH, Mcguinness OP, Breyer MD. 2007. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia 50: 452-460 https://doi.org/10.1007/s00125-006-0552-5
  25. Almind K, Kahn CR. 2004. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53: 3274-3285 https://doi.org/10.2337/diabetes.53.12.3274
  26. Richard SS, Cynthia MK, Christina C, James AM, Mark NF. 1988. Diet-induced type Ⅱ diabetes in C57BL/6J mice. Diabetes 37: 1163-1167 https://doi.org/10.2337/diabetes.37.9.1163
  27. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502
  28. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509
  29. Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC. 1985. Homeostasis model assessment: insulin resistance and fl-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419 https://doi.org/10.1007/BF00280883
  30. Russell JC, Tougas D, Taylor AW. 1970. Rapid assay for glycogen-cycle enzymes in small samples of muscle. Clin Chem 16: 900-902
  31. Hagit EF, Sandra AS, Michi MS, Renee CL, Edwin GK. 1999. Increased glycogen synthase kinase-3 activity in diabetes and obesity-prone C57BL/6J mice. Diabetes 48: 1-5 https://doi.org/10.2337/diabetes.48.1.1
  32. Kang SA, Jang KH, Hong KH, Choi WA, Jung KH, Lee IY. 2002. Effects of dietary $\beta$-glucan on adiposity and serum lipids levels in obese rats induced by high fat diet. J Food Sci Nutr 31: 1052-1057 https://doi.org/10.3746/jkfn.2002.31.6.1052
  33. Jeon BS, Park JW, Shin GG, Kim BK, Kim HK, Cho YS, Cha JY. 2004. Effect of fermented mushroom milk on hyperlipidemia and hepatic injury in streptozotocin-induced diabetic and Zucker diabetic fatty rats. Food Sci Biotech 13: 576-580
  34. Jeon BS, Park JW, Kim BK, Kim HK, Jung TS, Hahm JR, Kim DR, Cho YS, Cha JY. 2005. Fermented mushroom milk-supplemented dietary fibre prevents the onset of obesity and hypertriglyceridaemia in Otsuka Long-Evans Tokushima fatty rats. Diabetes Obes Metab 7: 709-715 https://doi.org/10.1111/j.1463-1326.2005.00456.x
  35. Bjorntorp P. 1990. 'Portal' adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arterioscler Thromb Vasc Biol 10: 493-496 https://doi.org/10.1161/01.ATV.10.4.493
  36. Randle PJ, Garland PB, Hales CN, Newsholme EA. 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785-789 https://doi.org/10.1016/S0140-6736(63)91500-9
  37. Won KC, Yoon JS. 2008. Glucose toxicity and pancreatic beta cell dysfunction in type 2 diabetes. J Korean Diabetes 32: 175-181 https://doi.org/10.4093/kdj.2008.32.3.175
  38. Williamson JR, Browning ET, Scholz R. 1969. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem 244: 4607-4616
  39. Park KS, Lee KU, Park SW, Lee HK, Min HK. 1997. Mechanism of insulin resistance: time dependence of development of insulin resistance in high fat fed rats. J Korean Diabetes 21: 168-175
  40. Champe PC, Harvey RA, Ferrier DR. 2008. Lippincott's illustrated reviews: Biochemistry. 4th ed. Lippincott Williams & Wilkins, Baltimore, MD. p 340-341
  41. Mcmanus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR. 2005. Role that phosphorylation of GSK3 plays in insulin and Wnt signaling defined by knockin analysis. EMBO J 24: 1571-1583 https://doi.org/10.1038/sj.emboj.7600633
  42. 정인경. 2007. 인슐린 저항성을 중심으로 본 제 2형 당뇨병의 병태생리. 임상내과 special I 506: 1-9
  43. 김성수. 2005. 비만과 당뇨병. 가정의학회지 2005년도 개원의 연수강좌. p 60-64
  44. Berg AH, Combs TP, DU X, Brownlee M, Scherer PE. 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7: 947-953 https://doi.org/10.1038/90992
  45. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7: 887-888 https://doi.org/10.1038/90984
  46. 안철우. 2007. 인슐린 저항성과 대사증후군의 병태생리의 최신지견. 임상내과 special I 510: 1-7
  47. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. 2004. Adiponectin and metabolic syndrom. Arterioscler Thromb Vascul Biol 24: 29-33 https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  48. Krakoff J, Funahaser T, Stenhouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y, Kobes S, Tataranni PA, Hanson RL, Knowler WC, Lindsay RS. 2003. Inflammatory markers, adiponectin and the risk of type 2 diabetes in the Pima Indians. Diabetes Care 26: 1745-1751 https://doi.org/10.2337/diacare.26.6.1745

Cited by

  1. Optimal Medium Composition of Cauliflower Mushroom (Sparassis latifolia) Cultivation Using Douglas Fir Wood Chip and Comparison of The β-glucan Contents of The Fruiting Body vol.42, pp.4, 2014, https://doi.org/10.5658/WOOD.2014.42.4.428
  2. Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells vol.40, pp.7, 2011, https://doi.org/10.3746/jkfn.2011.40.7.949
  3. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708
  4. Base-soluble polysaccharides from sclerotia of Inonotus obliquus vol.47, pp.6, 2012, https://doi.org/10.1007/s10600-012-0117-4
  5. Relationship between Bone Morphological Microstructure and Inflammatory Markers in Growing Mice Fed a High Fat Diet vol.44, pp.6, 2011, https://doi.org/10.4163/kjn.2011.44.6.481
  6. 유산균을 이용한 홍고추의 발효를 통한 항비만과 항당뇨 효과 vol.29, pp.3, 2009, https://doi.org/10.5352/jls.2019.29.3.354
  7. 도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과 vol.52, pp.1, 2020, https://doi.org/10.9721/kjfst.2020.52.1.81