DOI QR코드

DOI QR Code

Effects of Compositae Plants on Plasma Glucose and Lipid Level in Streptozotocin Induced Diabetic Rats

국화과 식물의 섭취가 Streptozotocin 유발 당뇨 흰쥐의 혈당과 지질 수준에 미치는 영향

  • Han, Hye-Kyoung (Plant Resources Research Institute, Duksung Women's University) ;
  • Yoon, Su-Jin (Dept. of Food and Nutrition, Duksung Women's University) ;
  • Kim, Gun-Hee (Plant Resources Research Institute, Duksung Women's University)
  • 한혜경 (덕성여자대학교 식물자원연구소) ;
  • 윤수진 (덕성여자대학교 식품영양학과) ;
  • 김건희 (덕성여자대학교 식물자원연구소)
  • Published : 2009.06.30

Abstract

This study was designed to examine the effects of Compositae plants on plasma glucose and lipid levels in streptozotocin (STZ) induced diabetic rats. Sprague-Dawley rats were randomly assigned to 5 groups: normal, STZ-control and three experimental groups [Artemisia iwayomogi (A. iwayomogi), Atractylodes lancea (A. lancea), and Taraxacum mongolicum (T. mongolicum)]. Normal and STZ-control group were fed an AIN-93 diet and three experimental groups were each fed a modified diet containing 10% compositae powder for 4 weeks. The plasma glucose levels at 4 weeks of A. iwayomogi, A. lancea, and T. mongolicum groups were significantly lower than STZ-control group. The A. iwayomogi and A. lancea groups had significantly suppressed hypertrophy of liver and kidney. The hematocrit levels of A. lancea and T. mongolicum group were significantly lower than STZ-control groups. The total cholesterol and triglyceride levels and atherogenic index (AI) of A. lancea group were significantly lower than STZ-control group. Intake of Compositae plants may be effective in antihyperglycemia by lowering blood glucose levels. The A. iwayomogi, A. lancea, and T. mongolicum can be beneficial for the diabetic complications and damage from the lipid peroxidation.

국화과(Compositae) 식물 중 인진, 창출 및 민들레 분말이 STZ 유발 당뇨 흰쥐의 혈당 및 혈장 지질 상태에 미치는 영향을 구명하기 위하여 Sprague-Dawley계 흰쥐에게 국화과 식물 분말이 함유된 식이를 4주간 섭취시켜 다음과 같은 결과를 얻었다. 실험 4주 후 체중증가량은 당뇨대조군에 비해 인진섭취군의 경우 유의적인 차이를 보이지는 않았지만 증가하였다. 평균 식이섭취량은 당뇨대조군에 비해 모든 당뇨실험군에서 감소하였으며, 창출섭취군과 민들레섭취군에서 유의적으로 감소하였다. 식이효율은 인진섭취군의 경우 유의적 차이는 없지만 가장 높은 식이효율을 나타내었다. 혈장 포도당 함량을 측정한 결과 당뇨대조군은 고혈당이 지속된 반면 실험 2주째에는 당뇨대조군보다 인진섭취군과 민들레섭취군, 실험 3주째에는 인진섭취군, 실험 4주째에는 인진섭취군과 민들레섭취군이 당뇨대조군보다 유의적으로 낮은 혈당 수준을 보였다. 창출섭취군에서는 실험 1주째부터 실험 4주째까지 당뇨대조군에 비해 유의적인 혈당 감소를 보여 국화과 식물의 섭취가 모두 혈당 상승 억제 효과가 있었다. 간장 글리코겐 함량은 인진섭취군, 창출섭취군 및 민들레섭취군의 모든 당뇨실험군에서 유의적인 차이는 없었으나 당뇨대조군보다 높은 수치를 나타내었다. 근육 글리코겐 함량도 인진섭취군에서 유의적이지는 않지만 당뇨대조군에 비해 높은 수치를 나타내었다. 장기의 무게를 체중 100g당으로 환산하였을 때 간장과 신장의 경우 인진섭취군, 창출섭취군 및 민들레섭취군의 무게가 당뇨대조군보다 유의적으로 낮은 것으로 나타나 간장과 신장의 비대를 억제한 것으로 나타났다. 폐의 경우 민들레섭취군이 당뇨대조군에 비해 낮은 무게를 나타냈다. 췌장, 비장 및 뇌의 경우 창출섭취군이 당뇨대조군에 비해 유의적으로 높은 무게를 나타내어 손상을 억제한 것으로 나타났다. 헤마토크릿치는 창출섭취군과 민들레섭취군에서 당뇨대조군에 비해 유의적으로 낮은 수준을 나타내었다. 인진섭취군의 경우 ALT 활성도는 유의적 차이를 보이지는 않았지만 당뇨대조군보다 낮은 활성도를 나타내어 간과 신장의 손상이 적음을 알 수 있었다. 실험 4주 후 혈장의 지질 함량을 측정한 결과 총콜레스테롤, 중성지방 및 유리지방산 함량이 창출섭취군에서 당뇨대조군에 비해 유의적으로 감소하였다. HDL-콜레스테롤 함량은 유의적인 차이는 보이지 않았으나 인진섭취군과 민들레섭취군에서 효과가 있는 것으로 나타났다. 이상의 실험결과 인진, 창출 및 민들레의 국화과식물의 섭취가 STZ으로 유발된 당뇨쥐의 혈당을 유의적으로 감소시켰으며, 창출의 섭취가 지질대사 이상 중 증가된 혈중 중성지방과 유리지방산을 유의적으로 감소시켰으므로 당뇨 시 혈당조절과 고지혈증 개선에 유익할 것으로 사료된다.

Keywords

References

  1. Lee SJ, Park JY, Nam CM, Jee SH. 2008. The prevalence estimation of metabolic syndrome and it's related factors based on data from general health medical examination: a multi-center study. J Korean Soc Health Information Health Statistics 33: 119-133
  2. Reaven GM. 1988. Role of insulin resistance in human disease. Diabetes 37: 1597-1607 https://doi.org/10.2337/diabetes.37.12.1595
  3. O'Brien RM, Granner DK. 1996. Regulation of gene expression by insulin. Physiol Rev 76: 1109-1161
  4. Somogy A, Pusztai P, Prechl J, Feher J. 1994. Hypothetical connection between diabetes mellitus and free radical reactions in atherosclerosis. Ory Hetil 135: 1815-1818
  5. Baynes W. 2003. Chemical modification of protein by lipids in diabetes. Clin Chem Lab Med 41: 1159-1165 https://doi.org/10.1515/CCLM.2003.179
  6. Marles RJ, Farnsworth NR. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2: 137-189 https://doi.org/10.1016/S0944-7113(11)80059-0
  7. Park JH. 2004. Medicinal plants of Korea. Shinil Books Company, Seoul. p1316, 1338, 1426-1427
  8. Ham SS, Chung CK, Lee JH, Choi K, Jung SW, Kim EJ. 1998. Antimutagenicity and cytotoxicity of Artemisia iwayomogi Kitamura extracts. J Korean Soc Food Sci Nutr 27: 157-162
  9. Hwang JS, Ji HJ, Koo KA, Lee NH, Yeo HK, Cheong SW, Park JH, Oh GS, Yoon CS, Youn HJ. 2005. AIP1, a water- soluble fraction from Artemisia iwayomogi, suppresses thymocyte apoptosis in vitro and down-regulates the expression of fas gene. Biol Pharm Bull 28: 921-924 https://doi.org/10.1248/bpb.28.921
  10. Kim SH, Cho CH, Kim SY, Eun JS, Shin TY. 2005. Anti-allergic effect of Artemisia iwayomogi on mast cell-mediated allergy model. Exp Biol Med 230: 82-88 https://doi.org/10.1177/153537020523000111
  11. Lee JA, Sung HN, Jeon CH, Gill BC, Oh GS, Youn HJ, Park JH. 2008. A carbohydrate fraction, AIP1 from Artemisia iwayomogi suppresses pulmonary eosinophilia and Th2- type cytokine production in an ovalbumin-induced allergic asthma. Down-regulation of TNF-$\alpha$ expression in the lung. Int Immunopharmacol 8: 117-125 https://doi.org/10.1016/j.intimp.2007.10.022
  12. Song YE, Ryu JS, Chung JR, Kwak JS, Kim DH, Kim BS, Rim CW. 2001. Study on the biological activity of Artemisia iwayomogi Kitamura. Korean J Medicinal Crop Sci 9: 116-123
  13. Establishment of data base on the law materials and their components used in the functional foods. 2005. Korea Food & Drug Administration
  14. Nakai Y, Kido T, Hashimoto K, Kase Y, Sakakibara I, Higuchi M, Sasaki H. 2003. Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying. J Ethnopharmacol 84: 51-55 https://doi.org/10.1016/S0378-8741(02)00260-X
  15. Zhang H, Han T, Sun LN, Huang BK, Chen YF, Zheng HC, Qin LP. 2008. Regulative effects of essential oil from Atractlodes lancea on delayed gastric emptying in stressinduced rats. Phytomedicine 15: 602-611 https://doi.org/10.1016/j.phymed.2008.02.005
  16. Tsneki H, Ma EL, Kobayashi S, Sekizaki N, Maekawa K, Sasaoka T, Wang MW, Kimura I. 2005. Antiangiogenic activity of $\beta$-eudemol in vitro and in vivo. Eur J Pharmacol 512: 105-115 https://doi.org/10.1016/j.ejphar.2005.02.035
  17. Yu KW, Shin KW. 2001. Bone marrow cell proliferation activity through intestinal immune system by the components of Atractylodes lancea DC. Korean J Food Sci Technol 33: 135-141
  18. Wei S, Zhou Q, Wang X. 2005. Identification of weed plants excluding the uptake of heavy metals. Environ Int 31: 829-834 https://doi.org/10.1016/j.envint.2005.05.045
  19. Wei S, Zhou Q, Mathews S. 2008. A newly found cadmium accumulator-Taraxacum mongolicum. J Hazard Mater 30: 544-547 https://doi.org/10.1016/j.jhazmat.2008.02.052
  20. Reeves PG. 1997. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127: 838S-841S
  21. Bauer JD. 1982. Clinical laboratory methods. 9th ed. Mosby Co., St. Louis, USA. p 188-189
  22. Rabbo E, Terkildsen TC. 1968. On the enzymatic determination of blood glucose. Scandinav J Lab Invest 12: 402-407 https://doi.org/10.3109/00365516009065404
  23. Hassid WZ, Abraham X. 1957. Chemical procedures for analysis of polysaccharides. In Methods in Enzymology. Academic press, New York, USA. Vol 3, p 34-50
  24. Reitman S, Frankel S. 1957. A colorimetric method the determination of serum glutamic oxalacetic and glutamine pyruvic transaminases. Am J Clin Pathol 28: 58-63
  25. Richmond W. 1973. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to enzymatic assay of total cholesterol in serum. J Clin Chem 19: 1350-1356
  26. Finely PR, Schifman RB, Williams RJ, Luchti DA. 1978. Cholesterol in high-density lipoprotein: Use of $Mg^{2+}$/dextran sulfate in its measurement. J Clin Chem 24: 931-933
  27. Giegel JL, Ham SB, Clema W. 1975. Serum triglyceride determined colorimetry with an enzyme that produces hydrogen peroxide. J Clin Chem 21: 1575-1581
  28. Kanai I, Kanai M. 1983. Compendium of the clinical inspection. 29th ed. Komoonsa, Seoul. p 467
  29. Malabu UH, Dryden S, Mccarthy HD, Kilpatrick A, Williams G. 1994. Effect of chronic vanadate administration in the STZ-induced diabetic rats: The antihyperglycemic action of vanadate is attributable entirely to its suppression of feeding. Diabetes 43: 9-15 https://doi.org/10.2337/diabetes.43.1.9
  30. Lee JS, Son HS, Maeng YS, Chang YK, Ju JS. 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Nutr 27: 819-827
  31. Kahn CR. 1985. The molecular mechanism of insulin action. Ann Rev Med 36: 249-251 https://doi.org/10.1146/annurev.me.36.020185.002241
  32. Williams KV, Mullen ML, Kelly DE, Wing RR. 1998. The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care 21: 2-8 https://doi.org/10.2337/diacare.21.1.2
  33. Ugochukwu NH, Figgers CL. 2007. Attenuation of plasma dyslipidemia and oxidative damage by dietary caloric restriction in streptozotocin-induced diabetic rats. Chem Biol Interact 169: 32-41 https://doi.org/10.1016/j.cbi.2007.05.002
  34. Chang MW, Jhonson MA. 1980. Effect of garlic on carbohydrate metabolism and lipid synthesis in rats. J Nutr 110: 931-936
  35. Shanmugasundaram ER, Gopith KI, Radha SK, Rajendran VM. 1990. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestere leaf extract. J Ethnopharmacol 30: 265-269 https://doi.org/10.1016/0378-8741(90)90106-4
  36. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572 https://doi.org/10.2337/diacare.4.5.561
  37. Steer KA, Sochor M, McLean P. 1985. Renal hypertrophy in experimental diabetes changes in pentose phosphate pathway activity. Diabetes 34: 485-490 https://doi.org/10.2337/diabetes.34.5.485
  38. Dai S, Thompson KH, McNeill JH. 1994. One-year treatment of streptozotocin-induced diabetic rats with vanadyl sulphate. Pharmacol Toxicol 74: 101-109 https://doi.org/10.1111/j.1600-0773.1994.tb01083.x
  39. Yang YR, Kim HL, Park YK. 2008. Effects of onion kimchi extract supplementation on blood glucose and serum lipid contents in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 37: 445-451 https://doi.org/10.3746/jkfn.2008.37.4.445
  40. Seo KH, Choi JS, Na JO, Uh ST, Kim YH, Park CS. 2006. Expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 after administration of endotoxin in diabetic rats. Tuberc Respir Dis 61: 256-264 https://doi.org/10.4046/trd.2006.61.3.256
  41. Rhee SJ, Shin JY, Cha BG. 1998. Effect of green tea catechin on the microsomal mixed function oxidase system of kidney and brain in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 27: 319-325
  42. Koh JB, Choi MA, Kim JY, Rho MH, Kim DJ. 1999. Effects of tea fungus/kombucha beverage on serum protein levels and enzyme activity in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 28: 1137-1143
  43. Dai S, McNeill JH. 1994. One-year treatment of non-diabetic and streptozotocin diabetic rats with vanadyl sulphate did not alter blood pressure or heamatological indices. Pharmacol Toxicol 74: 110-115 https://doi.org/10.1111/j.1600-0773.1994.tb01084.x
  44. Davis RH, Rosenthal KY, Cesasrio LR, Rouw GA. 1989. Processed Aloe vera administered topically inhibits inflammation. J Am Podiatr Med Assoc 79: 395-397 https://doi.org/10.7547/87507315-79-8-395
  45. Barbera A, Rodriguez-Gil JE, Guinovart JJ. 1994. Insulinlike actions of tungstate in diabetic rats. Normalization of hepatic glucose metabolism. J Biol Chem 269: 20047-20053
  46. Kimura Y, Okuda H, Okuda T, Hatano T, Agata I, Arichi S. 1985. Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. Effects of extracts of leaves of Artemisia species and caffeic acid chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil. Chem Pharm Bull 33: 2028-2034 https://doi.org/10.1248/cpb.33.2028
  47. Bursch W, Schulte-Hermann R. 1986. Cytoprotective effect of the prostacyclin derivative iloprost against liver cell death induced by the hepatotoxins carbon tetrachloride and bromobenzen. Klin Wochenschr 64: 47-50
  48. Rho HM, Choi M, Koh JB. 1998. Effects of serum raw soy flour (yellow and black) on protein concentrations and enzyme activity. J Korean Soc Food Sci Nutr 27: 724-730
  49. Kim SH, Kang JS, Lee SJ, Chung YJ. 2008. Antidiabetic effect of Korean red ginseng by puffing process in streptozotocin- induced diabetic rats. J Korean Soc Food Sci Nutr 37: 701-707 https://doi.org/10.3746/jkfn.2008.37.6.701
  50. Browinlee N, Vlassara H, Cerami A. 1984. Nonenzymatic glycosylation and the pathogenesis of diabetic complication. Ann Intern Med 101: 527-537 https://doi.org/10.7326/0003-4819-101-4-527
  51. Goldstein LJ, Brown SM. 1977. The low-density lipoprotein pathway and its relation to atherosclerosis. Annual Rev Biochem 46: 897-930 https://doi.org/10.1146/annurev.bi.46.070177.004341
  52. O'Meara NM, Devery RA, Owens D, Collins PB, Johnson AH, Tomkin GH. 1990. Cholesterol metabolism in alloxan induced diabetic rabbits. Diabetes 39: 629-633 https://doi.org/10.2337/diabetes.39.5.626
  53. Durrington PN, Stephens WP. 1980. The effects of treatment with insulin on serum high-density-lipoprotein cholesterol in rats with streptozotocin-induced diabetes. Clin Sci 59: 71-74 https://doi.org/10.1042/cs0590071
  54. Betteridge J. 2001. Dyslipidaemia and diabetes. Prac Diabetes Intern 18: 201-207 https://doi.org/10.1002/pdi.231
  55. Siegel RD, Cuples A, Schaefer EJ, Wilson PWF. 1996. Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metabolism 45: 1267-1272 https://doi.org/10.1016/S0026-0495(96)90246-2
  56. Nikkila EA, Kekki M. 1973. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism 22: 1-22 https://doi.org/10.1016/0026-0495(73)90024-3
  57. Kim SH, Ryu DS, Lee MY, Kim KH, Kim YH, Lee DS. 2008. Anti-diabetic activity of polysaccharide from Salicornia herbacea. Korean J Microbiol Biotechnol 36: 43-48
  58. You JS, Chang KJ. 1998. Effects of taurine supplementation on lipid peroxidation, blood glucose and blood lipid metabolism in streptozotocin-induced diabetic rats. Adv Exp Med Biol 442: 163-168 https://doi.org/10.1007/978-1-4899-0117-0_21
  59. Choi JW, Sohn KH, Kim SH. 1991. Effects of nicotinamide on the serum lipid composition in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 20: 306-311

Cited by

  1. Effect of Probiotics-Fermented Samjunghwan on Differentiation in 3T3-L1 Preadipocytes vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.001
  2. Hypoglycemic and Hypolipidemic Effects of Orostachys japonicus with Medicinal Herbs in Streptozotocin-Induced Diabetic Rats vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.587
  3. Anticancer effects of Ixeris dentata (Thunb. ex Thunb.) nakai extract on human melanoma cells A375P and A375SM vol.194, 2016, https://doi.org/10.1016/j.jep.2016.11.010
  4. Effect of a Combined Extract of Orostachys japonicus with Medicinal Plants on the Lipid Composition of the Liver and Kidney from Streptozotocin-induced Diabetic Rats vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.510
  5. Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.171
  6. Hypolipidemic and hypoglycemic effects ofOrostachys japonicusA. Berger extracts in streptozotocin-induced diabetic rats vol.5, pp.4, 2011, https://doi.org/10.4162/nrp.2011.5.4.301
  7. Effect of Artemisia iwayomogi Ethanol Extract on Hypoglycemic and Antioxidant Activities in Diabetic Rats vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1716
  8. Effects of Functional Extracts Made from Fermented Plants on Serum Glucose and Lipids Level in Streptozotocin-Induced Diabetic Rats vol.15, pp.3, 2010, https://doi.org/10.3746/jfn.2010.15.3.167
  9. Effect of Black Garlic and Gaeddongssuk (Artemisia annua L.) Extracts on the Lipid Profile and Hepatic Antioxidant Enzyme Activities of Exercised Rats vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.869
  10. The comparisons of Lycii Radicis Cortex and Corni Fructus water extract effects on streptozotocin-induced diabetes in rats vol.28, pp.6, 2013, https://doi.org/10.6116/kjh.2013.28.6.71
  11. The effects of Koidz. on type 2 diabetic rats vol.36, pp.1, 2015, https://doi.org/10.13048/jkm.15007
  12. Effects of Gamiolnyeo-jeon on Lipid Metabolism and Blood Glucose Level in db/db Mice vol.31, pp.2, 2016, https://doi.org/10.6116/kjh.2016.31.2.39.
  13. 천련자 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐에 대한 혈당, 지질대사, 당대사 효소 활성과 항산화 작용에 미치는 영향 vol.31, pp.2, 2009, https://doi.org/10.12925/jkocs.2014.31.2.277
  14. Streptozotocin으로 유발된 당뇨 흰쥐에 대한 연근 에탄올 추출물의 당대사 효소활성과 항산화 작용에 미치는 영향 vol.31, pp.3, 2009, https://doi.org/10.12925/jkocs.2014.31.3.509
  15. Streptozotocin에 의해 유도된 당뇨쥐에서 연교의 에탄올 추출물의 당뇨 개선 효과 vol.32, pp.2, 2009, https://doi.org/10.12925/jkocs.2015.32.2.226
  16. 도라지 뿌리 에탄올 추출물이 streptozotocin으로 유발된 흰쥐의 혈당지질, 당대사에 미치는 영향 vol.33, pp.4, 2009, https://doi.org/10.12925/jkocs.2016.33.4.686
  17. Streptozotocin으로 유발된 당뇨쥐에서 맥문동 에탄올 추출물의 당뇨개선효과 vol.34, pp.2, 2009, https://doi.org/10.12925/jkocs.2017.34.2.254
  18. 삼정환의 랫드를 이용한 단회 경구투여 독성시험 vol.17, pp.2, 2017, https://doi.org/10.15429/jkomor.2017.17.2.96
  19. 사육수의 고수온 스트레스가 벤자리(Parapristipoma trilineatum)에 미치는 생리학적 영향 vol.51, pp.6, 2009, https://doi.org/10.5657/kfas.2018.0714