• 제목/요약/키워드: magnetic resonance electrical impedance tomography

검색결과 18건 처리시간 0.019초

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF

자기공명촬영상에서 구한 내부 전류밀도를 이용한 임피던스 단층촬영법 (Impedance Tomography using Internal Current Density Distribution Measured by Nuclear Magnetic Resonance)

  • 이수열;우응제;문치웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.413-418
    • /
    • 1994
  • In electrical impedance tomography (EIT), we use boundary current and voltage measurements to provide the information about the cross-sectional distribution of electrical impedance or resistivity One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.7T NMR machine. We implemented a resistivity image reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the image reconstruction algorithm and furture direction of the research.

  • PDF

CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)

  • Jeon, Ki-Wan;Lee, Chang-Ock;Kim, Hyung-Joong;Woo, Eung-Je;Seo, Jin-Keun
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권4호
    • /
    • pp.279-287
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality providing cross-sectional images of a conductivity distribution inside an electrically conducting object. MREIT has rapidly progressed in its theory, algorithm and experimental technique and now reached the stage of in vivo animal and human experiments. Conductivity image reconstructions in MREIT require various steps of carefully implemented numerical computations. To facilitate MREIT research, there is a pressing need for an MREIT software package with an efficient user interface. In this paper, we present an example of such a software, called CoReHA which stands for conductivity reconstructor using harmonic algorithms. It offers various computational tools including preprocessing of MREIT data, identification of boundary geometry, electrode modeling, meshing and implementation of the finite element method. Conductivity image reconstruction methods based on the harmonic $B_z$ algorithm are used to produce cross-sectional conductivity images. After summarizing basics of MREIT theory and experimental method, we describe technical details of each data processing task for conductivity image reconstructions. We pay attention to pitfalls and cautions in their numerical implementations. The presented software will be useful to researchers in the field of MREIT for simulation as well as experimental studies.

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

Magnetic Resonance Electrical Impedance Tomography

  • 오석훈;이항로;우응제;조민형;이수열
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.100-100
    • /
    • 2002
  • 목적: 인체에 전류를 주입하면 체내 생체조직의 임피던스 분포에 따라서 전류밀도 분포가 결정된다. 이러한 전류밀도 분포를 MRI를 이용하여 고해상도로 얻어내면 인체 내부의 임피던스 영상을 구성할 수 있다. 이는 기존의 전기 임피던스 단층 촬영법이 갖는 여러 한계를 극복할 수 있으며 이로부터 생체의 기능에 대한 다양한 정보를 추출할 수 있게 된다. 본 논문은 3차원 팬텀 내부의 전류밀도 분포를 영상화하고 이것으로부터 인체내부의 임피던스 영상을 얻어내는 실험 결과를 기술한다.

  • PDF

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

3.0T MREIT 시스템을 위한 정전류원의 설계 및 성능검증 (Design and Performance Analysis of Current Source for 3.0T MREIT System)

  • 김규식;오동인;백상민;오석훈;우응제;이수열;이정한
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.165-169
    • /
    • 2004
  • 본 논문에서는 자기공명 임피던스 단층촬영기(MREIT, magnetic resonance electrical impedance tomography)에서 인체에 일정한 전류를 주입해주는 전류주입장치의 설계 및 성능 검증을 다루었다. MREIT는 인체에 전류를 주입하고, 주입전류에 의해 유기된 인체내부의 자속밀도 분포와 인체표면의 전압을 측정하여, 내부의 도전율 분포를 영상화하는 임피던스 영상기술이다. DSP(digital signal processor)를 기반으로 전류주입장치를 설계하였고, 극성을 가지는 펄스 형태로 전류를 주입할 수 있도록 하였다. 3.0T MREIT 시스템의 펄스열(pulse sequence)과 주입전류 파형이 동기화 되도록 제어하였고, 펄스의 폭과 크기를 변경할 수 있도록 하였다. 또한 계측용 증폭기를 사용하여 주입전류에 의해 유기된 전압을 측정하였다. 이러한 모든 기능은 DSP와 직렬통신으로 연결되는 PC가 제어하며 제어용 프로그램은 현재 주입되고 있는 전류의 크기와 파형을 모니터링 할 수 있도록 하였다. 본 논문은 이러한 전류주입장치의 설계와 구현을 기술하며, 전해질 용액 팬텀을 사용한 실험결과를 통한 성능의 분석을 다룬다.

MREIT of Postmortem Swine Legs using Carbon-hydrogel Electrodes

  • Minhas, Atul S.;Jeong, Woo-Chul;Kim, Young-Tae;Kim, Hyung-Joong;Lee, Tae-Hwi;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권6호
    • /
    • pp.436-442
    • /
    • 2008
  • Magnetic resonance electrical impedance tomography(MREIT) has been suggested to produce cross-sectional conductivity images of an electrically conducting object such as the human body. In most previous studies, recessed electrodes have been used to inject imaging currents into the object. An MRI scanner was used to capture induced magnetic flux density data inside the object and a conductivity image reconstruction algorithm was applied to the data. This paper reports the performance of a thin and flexible carbon-hydrogel electrode that replaces the bulky and rigid recessed electrode in previous studies. The new carbon-hydrogel electrode produces a negligible amount of artifacts in MR and conductivity images and significantly simplifies the experimental procedure. We can fabricate the electrode in different shapes and sizes. Adding a layer of conductive adhesive, we can easily attach the electrode on an irregular surface with an excellent contact. Using a pair of carbon-hydrogel electrodes with a large contact area, we may inject an imaging current with increased amplitude primarily due to a reduced average current density underneath the electrodes. Before we apply the new electrode to a human subject, we evaluated its performance by conducting MREIT imaging experiments of five swine legs. Reconstructed conductivity images of the swine legs show a good contrast among different muscles and bones. We suggest a future study of human experiments using the carbon-hydrogel electrode following the guideline proposed in this paper.

MREIT Conductivity Imaging of Pneumonic Canine Lungs: Preliminary Post-mortem Study

  • Kim, Hyung-Joong;Kim, Young-Tae;Jeong, Woo-Chul;Minhas, Atul S.;Lee, Tae-Hwi;Lim, Chae-Young;Park, Hee-Myung;Kwon, O-Jung;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.94-98
    • /
    • 2010
  • In magnetic resonance electrical impedance tomography (MREIT), a current-injection MR imaging method is adopted to produce a cross-sectional image of an electrical conductivity distribution in addition to MR images. The purpose of this study was to test the feasibility of MREIT for differentiating the canine lung parenchyma without and with pneumonia. Three normal healthy beagles and two mixed breed dogs with pneumonia were used. After attaching electrodes around the chest, we placed the dog inside our MR scanner. We injected as much as 30 mA current in a form of short pulses into the chest region. Reconstructed conductivity images of normal canine lungs exhibit a peculiar pattern of a relatively coarse salt and pepper noise. On the contrary, conductivity images of pneumonic canine lungs show significantly enhanced contrast of the lesions while the corresponding MR images show a little bit of contrast in the middle and caudal lung parenchyma due to the accumulation of pleural fluid. This preliminary study indicates that MREIT imaging of the chest may deliver unique new diagnostic information.