단조프레스기의 유압유 누유영역 영상 감지 시스템

Image Detection System for Leakage Regions of Hydraulic Fluid in Faring Press Machine

  • 배성호 (동명대학교 의용공학과)
  • 발행 : 2009.11.30

초록

단조프레스기의 유압실에서 배관의 연결부위의 손강으로 인한 누유는 인명피해와 기계 파손의 위험성이 있어 이를 조기에 발견하여 예방하는 시스템이 필요하다. 본 논문에서는 원격지에서 회전형 카메라를 이용하여 유압유의 누유여부를 자동 인식하는 시스템을 구현하였다. 구현한 시스템은 라벨링 과정에서 객체영역을 나타내는 경계사각형을 구하고 경계사각형의 높이와 폭에 대한 비율, 누유형상의 원형도를 이용하여, 올바른 누유영역을 추출하였다. 또한 잡음제거와 영상의 이동과 회전에 대한 보정을 전처리 과정으로 수행한다. 실험을 통하여 제안한 시스템이 여러 가지 조명 환경에서도 누유영역을 정확하게 찾아내는 것을 확인하였다.

In the hydraulic room of a forging press machine, a system which can detect and prevent risks at its early stage is needed because there may be a leakage due to the damage of the connection parts of the piping which can endanger human life and mechanical damage. In this paper, the system to automatically recognize a leakage of hydraulic fluid in terms of using the pan/tilt camera from a remote place is implemented. It finds the bounding boxes which are recognized with object regions in the process of labeling and detects the proper leakage regions of hydraulic fluid with the ratios of width and height of the bounding boxes and compactness of the leakage shape. Also, it performs noise removal and calibration for transition and rotation of image as a preprocessing process. The experimental results show that the proposed system has been verified to detect the leakage regions accurately in various sources of light.

키워드

참고문헌

  1. N. Papanikolopoulos, P. Khosla, and T. Kanade, "Visual tracking of a moving target by a camera mounted on a robot : A Combination of Contro and Vision," IEEE Trans. Robotics and Automation, Vol. 9, No. 1, pp. 135, 1993.
  2. D. M. Gavrila, "Pedestrian detection from a moving vehicle," Proc. Eur. Conf. Comp. Vis., Vol. 2, pp. 37-49, 2000.
  3. D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge, "Tracking non-rigid objects in complex scenes," Proceedings of 4th ICCV, pp. 93-101, 1993.
  4. Z. Durie, F. Li, Y. Sun, and H. Wechsler. "Using normal flow for detection and tracking of limbs in color image," Proc. International Conference on Pattern Recognition, Quebec City, Canada, Aug. 2002.
  5. G. L. Foresti, "A real-time system for video surveillance of unattended outdoor environments," IEEE Trans. on Circuit and Systems for Video Tech, Vol.8, No.6, pp. 142-145, 1998.
  6. M. Sonka, V. Hlavac, and R. Boyle, Image Processing Analysis, and Machine Vision, PWS Publishing, 1999.
  7. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall, 2004.
  8. Bernd Jahne, Digital Image Processing, Springer, 2002.
  9. S. E. Umbaugh, Computer Vision and Image Processing Analysis, and Machine Vision, Prentice Hall, 1998.
  10. D. H. Ballard and C. M. Brown, Digital Image Processing, Prentice Hall, 1982.
  11. B. Kruse, "A fast algorithm for segmentation of connected components in binary image," Proceedings of First Scandinavian conference on Image Analysis, 1980.