DOI QR코드

DOI QR Code

Three-dimensional finite element analysis for the effect of retentive groove design on joint strength of casting connection

유지구 설계가 주조연결강도에 미치는 영향에 관한 삼차원 유한요소법적 연구

  • Kim, Jung-Woo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeon, Young-Chan (Department of Dentistry, Graduate School, Pusan National University) ;
  • Yun, Mi-Jung (Department of Dentistry, Graduate School, Pusan National University)
  • 김정우 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실 대학원) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실 대학원) ;
  • 윤미정 (부산대학교 치과대학 치과보철학교실)
  • Published : 2009.01.30

Abstract

Statement of problem: A casting connection technique is widely used for repair, correction and addition to base metal framework. However, a casting connection technique may increase the risk of failure in clinical situations when high stresses exist. Purpose: The purpose of this study was to investigate the mechanical retentive groove design comparatively to increase the joint strength by using the three-dimensional finite element analysis model of a 3-unit fixed partial denture. Material and methods: Ten finite element models were constructed. (Model A: One retentive groove, Model B: Two retentive grooves, Model C: Three retentive grooves, Model D: Four retentive grooves, Model E: One horizontal groove and two vertical grooves, Model F: Two horizontal grooves and one vertical groove, Model G: One groove with the enlarged dimension, Model H: Two grooves with the enlarged dimension, Model I: One groove with the increased height, Model J: One groove with the increased width of base). The vertical force was applied to the mesial and the distal fossa to the casting connection of mandibular first molar. Results: The main factors, affecting joint strength of casting connection were both the retention between the primary cast and the secondary cast and the thickness of the primary cast remaining after preparing retentive groove. The increase of retentive force, according to the numbers and the dimension of retentive groove had an effect on distributing stress. However, in some cases, the increase of retentive force resulted in the increase of stress by reducing thickness of the primary cast in the connection area. Conclusion: The design of retentive groove that limits number of retentive groove for metal thickness and increases the depth of retentive groove for retention is highly recommended.

연구목적: 본 연구에서는 주조연결부의 하중 전달기전과 함께 연결강도를 증진시킬 수 있는 기계적 유지구 설계 방법을 주조연결한 3-unit 고정성 국소의치의 삼차원 유한요소 모형으로 응력분포를 비교 관찰하여 알아보고자 하였다. 연구 재료 및 방법: 10개의 유한요소 모형을 형성하였다. (모형 A: 1개의 유지구, 모형 B: 2개의 유지구, 모형 C: 3개의 유지구, 모형 D: 4개의 유지구, 모형 E: 1개의 수평구와 2개의 수직구, 모형 F: 2개의 수평구와 1개의 수직구, 모형 G: 크기가 증가된 1개의 유지구, 모형 H: 크기가 증가된 2개의 유지구, 모형 I: 높이가 증가된 1개의 유지구, 모형 J: 기저부 너비가 증가된 1개의 유지구). 하악 제 1대구치에서 이차 주조체 양측의 근심와와 원심와에 수직하중을 가하였다. 결과: 일차 주조체와 이차 주조체 간의 유지력과 유지구 형성 후에 남아 있는 일차 주조체 연결부의 두께가 주조연결부의 강도에 영향을 주는 주요소였다. 유 지구의 개수나 크기 증가에 따른 유지력 증가는 응력을 분산시키는 효과를 나타냈으나 경우에 따라서는 상대적으로 일차 주조체의 연결부 두께를 감소시켜 응력 값이 증가하는 결과를 초래하였으며, 주조연결부의 기계적 실패는 이차 주조체보다는 일차 주조체에서 일어날 가능성이 높았다. 결론: 주조연결을 위한 유지구 형성 시에는 일차 주조체 연결부의 잔존 금속 두께를 고려하여 유지구의 개수를 제한하고, 이와 함께 일차 주조체와 이차 주조체간의 유지력을 최대화하기 위하여 유지구의 기저면보다는 깊이를 증가시키는 유지구 설계가 바람직한 방법으로 생각된다.

Keywords

References

  1. Weiss PA, Munyon RE. Repairs, corrections and additions to non-precious ceramo-metal frameworks (II). Quintessence Dent Technol 1980;4:45-58.
  2. DeHoff PH, Anusavice KJ, Evans J, Wilson HR. Effectiveness of cast-joined Ni-Cr-Be structures. Int J Prosthodont 1990;3:550-4.
  3. Minagi S, Tanaka T, Sato T, Matsunaga T. Double-casting method for fixed prosthodontics with functionally generated path. J Prosthet Dent 1998;79:120-4. https://doi.org/10.1016/S0022-3913(98)70203-3
  4. Fehling AW. Cast connectors as cores for ceramometal pontics on removable partial dentures and for splinting anterior crowns. J Prosthet Dent 1990;63:167-71. https://doi.org/10.1016/0022-3913(90)90101-H
  5. McCartney JW, Pearson R. Stabilization investment template for direct casting connection of implant framework segments. J Prosthet Dent 1997;78:106-8. https://doi.org/10.1016/S0022-3913(97)70092-1
  6. Fehling AW, Sansom BP, Meiser ET, Johnson PF. Cast connectors: an alternative to soldering base metal alloys. J Prosthet Dent 1986;55:195-7 https://doi.org/10.1016/0022-3913(86)90341-0
  7. Seol YH, Jeong CM, Jeon YC, Kang SW. Fit of implant frameworks fabricated by one-piece casting, laser welding, soldering, and electric discharge machining. J Korean Acad Prosthodont 2002;40:156-71.
  8. Zoidis PC, Winkler S, Karellos ND. The effect of soldering, electrowelding, and cast-to procedures on the accuracy of fit of cast implant bars. Implant Dent 1996;5:163-8. https://doi.org/10.1097/00008505-199600530-00002
  9. Romero GG, Engelmeier R, Powers JM, Canterbury AA. Accuracy of three corrective techniques for implant bar fabrication. J Prosthet Dent 2000;84:602-7. https://doi.org/10.1067/mpr.2000.111494
  10. Jeong CM, Jeon YC, Lim JS. Flexure strength of castjoined connector with Ni-Cr-Be alloy. J Korean Acad Prosthodont 1998;36:858-66.
  11. Jeong CM. Effect of the undercut in retention grooves on flexure strength of cast-joined connector with Ni-Cr-Be alloy. J Pusan National University Hospital 2000;8:221-7.
  12. Bertolotti RL, Napolitano LH. Strength of cast-joined nonprecious alloy frameworks. J Dent Res 1984;63(special issue): 208(abstr no. 334).
  13. Son HO, Lee TJ, Jeong JH, et al. Dental anatomy. 5th ed. Seoul:Jeesung Publishing Inc.;2001. pp. 151-7, 179-92
  14. Wheeler RC. Dental anatomy, Physiology and occlusion. 6th ed. Philadelphia;WB Saunders; 1984. pp. 184-287.
  15. Carranza FA. Glickman’s clinical periodontology. 7th ed.Philadelphia;WB Saunders; 1990. pp. 47-8.
  16. Goel VK, Khera SC, Gurusami S, Chen RC. Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 1992;67:174-83. https://doi.org/10.1016/0022-3913(92)90449-K
  17. Farah JW, Craig RG, Meroueh KA. Finite element analysis of three- and four-unit bridges. J Oral Rehabil 1989;16:603-11. https://doi.org/10.1111/j.1365-2842.1989.tb01384.x
  18. Khera SC, Goel VK, Chen RC, Gurusami SA. A three-dimensional finite element model. Oper Dent 1988;13:128-37.
  19. Morris HF. Veterans Administration Cooperative Studies Project No. 147/242. Part VII: The mechanical properties of metal ceramic alloys as cast and after simulated porcelain firing. J Prosthet Dent 1989;61:160-9. https://doi.org/10.1016/0022-3913(89)90366-1
  20. Benzing UR, Gall H, Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants 1995;10:188-98.
  21. Howell AH, Manly RS. An electronic strain gauge for measuring oral forces. J Dent Res 1948;27:705-12. https://doi.org/10.1177/00220345480270060701
  22. Rabinowicz E. Friction and wear of materials. 2nd ed. John Wiley & Sons Inc.;1995. pp. 117.
  23. Thoupos GA, Zouras CS, Winkler S, Roussos VG. Connecting implant framework segments. Implant Dent 1995;4:97-9. https://doi.org/10.1097/00008505-199505000-00004
  24. Smyd ES. Dental engineering. J Dent Res 1948;27:649-60. https://doi.org/10.1177/00220345480270060201
  25. Yang HS, Lang LA, Felton DA. Finite element stress analysis on the effect of splinting in fixed partial dentures. J Prosthet Dent 1999;81:721-8. https://doi.org/10.1016/S0022-3913(99)70113-7
  26. Jeong CM, Lee HY. A finite element stress analysis of the stress distribution and the shock absorption in an osseointegrated implant-natural tooth supported fixed partial denture. J Korean Acad Prosthodont 1992;30:582-610.