Iron Chelator-Inducible Expression System for Escherichia coli

  • Lim, Jae-Myung (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hong, Mi-Ju (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Seong-Hun (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Doo-Byoung (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Hyun-Ah (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Kwon, Oh-Suk (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2008.08.31

Abstract

The $P_{entC}$ promoter of the entCERA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the $P_{entC}$ promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the $P_{entC}$ promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding $\beta$-galactosidase. $\beta$-Galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level $\beta$-galactosidase expression by the $P_{entC}$ promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.

Keywords

References

  1. Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315 https://doi.org/10.1016/0378-1119(88)90440-4
  2. Bagg, A. and J. B. Neilands. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26: 5471-5477 https://doi.org/10.1021/bi00391a039
  3. Baichoo, N. and J. D. Helmann. 2002. Recognition of DNA by Fur: A reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184: 5826-5832 https://doi.org/10.1128/JB.184.21.5826-5832.2002
  4. Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421 https://doi.org/10.1016/S0958-1669(99)00003-8
  5. Brickman, T. J., B. A. Ozenberger, and M. A. McIntosh. 1990. Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J. Mol. Biol. 212: 669-682 https://doi.org/10.1016/0022-2836(90)90229-F
  6. Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107-127 https://doi.org/10.1016/0022-2836(81)90508-8
  7. Brosius, J., M. Erfle, and J. Storella. 1985. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J. Biol. Chem. 260: 3539-3541
  8. de Boer, H. A., L. J. Comstock, and M. Vasser. 1983. The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 21-25
  9. de la Torre, J. C., J. Ortin, E. Domingo, J. Delamarter, B. Allet, J. Davies, K. P. Bertrand, L. V. Wray Jr., and W. S. Reznikoff. 1984. Plasmid vectors based on Tn10 DNA: Gene expression regulated by tetracycline. Plasmid 12: 103-110 https://doi.org/10.1016/0147-619X(84)90056-8
  10. Donovan, R. S., C. W. Robinson, and B. R. Glick. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145-154 https://doi.org/10.1007/BF01569997
  11. Dykxhoorn, D. M., R. St. Pierre, and T. Linn. 1996. A set of compatible tac promoter expression vectors. Gene 177: 133-136 https://doi.org/10.1016/0378-1119(96)00289-2
  12. Figge, J., C. Wright, C. J. Collins, T. M. Roberts, and D. M. Livingston. 1988. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell 52: 713-722 https://doi.org/10.1016/0092-8674(88)90409-6
  13. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  14. Hannig, G. and S. C. Makrides. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16: 54-60 https://doi.org/10.1016/S0167-7799(97)01155-4
  15. Hantke, K. 2002. Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein. J. Mol. Microbiol. Biotechnol. 4: 217-222
  16. Kwon, O., M. E. Hudspeth, and R. Meganathan. 1996. Anaerobic biosynthesis of enterobactin Escherichia coli: Regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin $K_2$) biosynthesis. J. Bacteriol. 178: 3252-3259 https://doi.org/10.1128/jb.178.11.3252-3259.1996
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  18. Lee, H. J., S. H. Bang, K. H. Lee, and S. J. Park. 2007. Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J. Bacteriol. 189: 2629-2636 https://doi.org/10.1128/JB.01791-06
  19. Lee, S. K. and J. D. Keasling. 2005. A propionate-inducible expression system for enteric bacteria. Appl. Environ. Microbiol. 71: 6856-6862 https://doi.org/10.1128/AEM.71.11.6856-6862.2005
  20. Llull, D. and I. Poquet. 2004. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398-5406 https://doi.org/10.1128/AEM.70.9.5398-5406.2004
  21. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538
  22. Ozenberger, B. A., T. J. Brickman, and M. A. McIntosh. 1989. Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J. Bacteriol. 171: 775-783 https://doi.org/10.1128/jb.171.2.775-783.1989
  23. Podkovyrov, S. M. and T. J. Larson. 1995. A new vector-host system for construction of lacZ transcriptional fusions where only low-level gene expression is desirable. Gene 156: 151-152 https://doi.org/10.1016/0378-1119(95)00053-9
  24. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  25. Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96 https://doi.org/10.1016/0378-1119(87)90095-3
  26. Smits, T. H., M. A. Seeger, B. Witholt, and J. B. van Beilen. 2001. New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid 46: 16-24 https://doi.org/10.1006/plas.2001.1522
  27. Su, T. Z., H. Schweizer, and D. L. Oxender. 1990. A novel phosphate-regulated expression vector in Escherichia coli. Gene 90: 129-133 https://doi.org/10.1016/0378-1119(90)90448-Z
  28. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119 https://doi.org/10.1016/0378-1119(85)90120-9
  29. Yoo, A. Y., S. W. Kim, J. E. Yu, Y. H. Kim, J. Cha, J. I. Oh, S. K. Eo, J. H. Lee, and H. Y. Kang. 2007. Requirement of Fur for the full induction of Dps expression in Salmonella enterica serovar Typhimurium. J. Microbiol. Biotechnol. 17: 1452-1459
  30. Zhang, Z., G. Gosset, R. Barabote, C. S. Gonzalez, W. A. Cuevas, and M. H. Saier Jr. 2005. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J. Bacteriol. 187: 980-990 https://doi.org/10.1128/JB.187.3.980-990.2005