Interactome Analysis of Yeast Glutathione Peroxidase 3

  • Published : 2008.08.31

Abstract

Oxidative stress damages all cellular constituents, and therefore, cell has to possess various defense mechanisms to cope. Saccharomyces cerevisiae, widely used as a model organism for studying cellular responses to oxidative stress, contains three glutathione peroxidase (Gpx) proteins. Among them, Gpx3 plays a major defense role against oxidative stress in S. cerevisiae. In this study, in order to identity the new interaction proteins of Gpx3, we carried out two-dimensional gel electrophoresis after immunoprecipitation (IP-2DE), and MALDI-TOF mass spectrometry. The results showed that several proteins including protein disulfide isomerase, glutaredoxin 2, and SSY protein 3 specifically interact with Gpx3. These findings led us to suggest the possibility that Gpx3, known as a redox sensor and ROS scavenger, has another functional role by interacting with several proteins with various cellular functions.

Keywords

References

  1. Appenzeller-Herzog, C. and L. Ellgaard. 2008. In vivo reduction-oxidation state of protein disulfide isomerase: The two active sites independently occur in the reduced and oxidized forms. Antioxid. Redox Signal. 10: 55-64 https://doi.org/10.1089/ars.2007.1837
  2. Azevedo, D., F. Tacnet, A. Delaunay, C. Rodrigues-Pousada, and M. B. Toledano. 2003. Two redox centers within Yap1 for $H_2O_2$ and thiol-reactive chemicals signaling. Free Radic. Biol. Med. 35: 889-900 https://doi.org/10.1016/S0891-5849(03)00434-9
  3. Delaunay, A., D. Dflieger, M. B. Barrault, J. Vinh, and M. B. Toledano. 2002. A thiol peroxidase is an $H_2O_2$ receptor and redox-transducer in gene activation. Cell 111: 471-481 https://doi.org/10.1016/S0092-8674(02)01048-6
  4. Gallogly, M. M. and J. J. Mieyal. 2007. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharm. 7: 381-391 https://doi.org/10.1016/j.coph.2007.06.003
  5. Inoue, Y., T. Matsuda, K. Sugiyama, S. Izawa, and A. Kimura. 1999. Genetic analysis of glutathione peroxide in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009 https://doi.org/10.1074/jbc.274.38.27002
  6. Jang, M., B. C. Park, D. H. Lee, K.-H. Bae, S. Cho, H. S. Park, B. R. Lee, and S. G. Park. 2007. Interaction proteome analysis of Xanthomonas Hrp proteins. J. Microbiol. Biotechnol. 17: 359-363
  7. Kang, T. H., K.-H. Bae, M.-j. Yu, W. K. Kim, H. R. Hwang, H. Jung, et al. 2007. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 7: 2624-2635 https://doi.org/10.1002/pmic.200601028
  8. Kang, S., E. Y. Kim, Y. J. Bahn, J. W. Chung, D. H. Lee, S. G. Park, T.-S. Yoon, B. C. Park, and K.-H. Bae. 2007. A proteomic analysis of the effect of MAPK pathway activation on $\iota$-glutamate-induced neuronal cell death. Cell. Mol. Biol. Lett. 12:139-147 https://doi.org/10.2478/s11658-006-0057-8
  9. Kho, C. W., P. Y. Lee, K.-H. Bae, S. Cho, Z. W. Lee, B. C. Park, S. Kang, D. H. Lee, and S. G. Park. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348: 25-35 https://doi.org/10.1016/j.bbrc.2006.06.067
  10. Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analysis of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17: 207-217
  11. Kohen, R. and A. Nyska. 2002. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30: 620-650 https://doi.org/10.1080/01926230290166724
  12. Lieu, H.-Y., H.-S. Song, S.-N. Yang, J.-H. Kim, H. J. Kim, Y.-D. Park, C.-S. Park, and H.-Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  13. Lee, J.-O., Y.-O. Kim, D.-H. Shin, J.-H. Shin, and E.-K. Kim. 2006. Production of selenium peptide by autolysis of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 1041-1046
  14. Lee, P. Y., C. W. Kho, D. H. Lee, S. Kang, S. Kang, S. C. Lee, et al. 2007. Glutathione peroxidase 3 of Saccharomyces cerevisiae suppresses non-enzymatic proteolysis of glutamine synthetase in an activity-independent manner. Biochem. Biophys. Res. Commun. 362: 405-409 https://doi.org/10.1016/j.bbrc.2007.08.035
  15. Ma, L. H., C. L. Takanishi, and M. J. Wood. 2007. Molecular mechanism of oxidative stress perception by the Orp1 protein. J. Biol. Chem. 282: 31429-31436 https://doi.org/10.1074/jbc.M705953200
  16. Na, K. S., B. C. Park, M. Jang, S. Cho, D. H. Lee, S. Kang, C.-K. Lee, K.-H. Bae, and S. G. Park. 2007. Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol. Cells 24: 261-267
  17. Sies, H. and E. Cadenas. 1985. Oxidative stress: Damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311: 617-631 https://doi.org/10.1098/rstb.1985.0168
  18. Stadtman, E. R. 1992. Protein oxidation and aging. Science 257:1220-1224 https://doi.org/10.1126/science.1355616
  19. Wheeler, G. L. and C. M. Grant. 2004. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol. Planta 120: 12-20 https://doi.org/10.1111/j.0031-9317.2004.0193.x
  20. Yoon, S. O., C. H. Yun, and A. S. Chung. 2002. Dose effect of oxidative stress on signal transduction in aging. Ageing Dev. 123: 1597-1604 https://doi.org/10.1016/S0047-6374(02)00095-7