EBG Resonator Antenna with a Stripline Type FSS Superstrate for PCS-band Base Station Antennas

스트립라인 형태의 주파수 선택적 표면 덮개층을 이용한 PCS대역 기지국용 EBG 공진기 안테나

  • Yeo, Jun-Ho (School of Computer & Communication Eng., Daegu University) ;
  • Kim, Dong-Ho (Radio & broadcasting fundamental technology research team, Electronics and Telecommunications Research Institute)
  • 여준호 (대구대학교 정보통신공학부) ;
  • 김동호 (한국전자통신연구원 전파방송원천기술연구팀)
  • Published : 2008.08.25

Abstract

In this paper, an EBG(Electromagnetic BandGap) resonator antenna with a stripline type FSS(Frequency Selective Surface) superstrate for PCS-band base station antennas is proposed. The characteristics of resonant frequency and -3dB bandwidth of a unit cell of a superstrate are first analyzed by varing several design parameters such as a strip width and a unit cell width in order to design an EBG resonator antenna satisfying the required antenna gain and bandwidth for PCS-band base station antennas. Among various unit cell shapes, strip dipole and stripline are considered and their characteristics are compared. It was found that a resonant length of the EBG resonator antenna becomes smaller when the stripline shape is used and the control of the bandwidth is also much easier. By using the unit cell simulation results, planar and cylindrical EBG resonator antennas at PCS-band are designed.

본 논문에서는 스트립라인 형태의 주파수 선택적 표면 덮개층을 이용하여 PCS대역의 기지국 안테나로 사용될 수 있는 EBG 공진기 안테나를 제안하였다. PCS대역의 기지국 안테나에서 요구되는 안테나 이득과 대역폭을 가지는 EBG 공진기 안테나를 설계하기 위하여 덮개층 주기 구조의 단위 셀 시뮬레이션을 이용한 다양한 설계 파라미터의 변화에 따른 공진주파수 및 대역폭의 특성을 분석하였다. 이를 위하여 여러 구조들 중에서 많이 사용되는 스트립다이폴과 스트립라인 구조의 특성을 비교하였으며, 스트립라인 구조가 스트립다이폴 구조에 비해서 EBG 공진기의 공진 길이가 더 짧고 대역폭 조정이 더 쉬움을 알 수 있었다. 단위 셀 시뮬레이션 결과를 이용하여 PCS대역을 만족하는 평면구조의 EBG 공진기 안테나와 원통형 EBG 공진기 안테나를 설계하였다.

Keywords

References

  1. 박면주, 'LH Metamaterial의 마이크로파 응용,' 한국전자파학회지, 제16권, 제4호, 62-75쪽, 2005년 10월
  2. P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, and J.-M. Baracco, 'Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications,' IEEE Trans. Antennas and Propagation, Vol. 51, no. 10, pp. 2667-2677, Oct. 2003 https://doi.org/10.1109/TAP.2003.817566
  3. F. Yang and Y. Rahmat-Samii, 'Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: a low mutual coupling design for array applications,' IEEE Trans. Antennas and Propagation, Vol. 51, no. 4, pp. 2936-2946, Oct. 1956 https://doi.org/10.1109/TAP.2003.817983
  4. G. V. Trentini, 'Partially reflecting sheet arrays,' IRE Trans. Antennas and Propagation, Vol. 4, pp. 666-670, Oct. 1956 https://doi.org/10.1109/TAP.1956.1144455
  5. D. R. Jackosn and A. A. Oliner, 'A leaky-wave analysis of the high-gain printed antenna configuration,' IEEE Trans. Antennas and Propagation, Vol. 36, no. 7, pp. 905-910, Jul. 1988 https://doi.org/10.1109/8.7194
  6. D. R. Jackosn, A. A. Oliner, and A. Ip, 'Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure,' IEEE Trans. Antennas and Propagation, Vol. 41, no. 3, pp. 344-348, Mar. 1993 https://doi.org/10.1109/8.233128
  7. T. Zhao, D. R. Jackson, J. T. Williams, H. Y. Yang, and A. A. Oliner, '2-D periodic leaky-wave antennas-part I: metal patch design,' IEEE Trans. Antennas and Propagation, Vol. 53, no. 11, pp. 3505-3514, Nov. 2005 https://doi.org/10.1109/TAP.2005.858579
  8. T. Zhao, D. R. Jackson, and J. T. Williams, '2-D periodic leaky-wave antennas—part II: slot design,' IEEE Trans. Antennas and Propagation, Vol. 53, no. 11, pp. 3515-3524, Nov. 2005 https://doi.org/10.1109/TAP.2005.858580
  9. D. R. Jackson and N. G. Alexopoulos, 'Gain enhancement methods for printed circuit antennas,' IEEE Trans. Antennas and Propagation, Vol. 33, no. 9, pp. 976-987, Sep. 1985 https://doi.org/10.1109/TAP.1985.1143709
  10. H. Y. Yang and N. G. Alexopoulos, 'Gain enhancement methods for printed circuit antennas through multiple superstrates,' IEEE Trans. Antennas and Propagation, Vol. 35, no. 7, pp. 860-863, Jul. 1987 https://doi.org/10.1109/TAP.1987.1144186
  11. A. P. Feresidis and J. C. Vardaxoglou, 'High gain planar antenna using optimised partially reflective surfaces,' IEE Proceedings-Microwave, Antennas and Propagation, Vol. 148, no. 6, pp. 345-350, Dec. 2001 https://doi.org/10.1049/ip-map:20010828
  12. A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, 'Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas', IEEE Trans. Antennas and Propagation, Vol. 53, no. 1, pp. 209-215, Jan. 2005 https://doi.org/10.1109/TAP.2004.840528
  13. C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, 'An Electromagnetic BandGap resonator antenna', IEEE Trans. Antennas and Propagation, Vol. 50, no. 9, pp. 1285-1290, Sep. 2002 https://doi.org/10.1109/TAP.2002.800699
  14. Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, 'Application of Electromagnetic Bandgap(EBG) Superstrates with Controllable Defects for a Class of Patch Antennas as Spatial Angular Filters,' IEEE Trans. Antennas and Propagation, Vol. 53, No. 1, Part 1, pp. 224-235, Jan. 2005 https://doi.org/10.1109/TAP.2004.840521
  15. Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, 'Design of a High-Directivity Electromagnetic Band Gap (EBG) Resonator Antenna Using a Frequency Selective Surface (FSS) Superstrate,' Microwave & Optical Technology Letters, Vol. 44, No. 6, pp. 462-467, Dec. 2004
  16. D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, 'Design of Novel Thin Frequency Selective Surface (FSS) Superstrates for Dual-band Directivity Enhancement,' IET Proceedings Special Issue on Metamaterials (RF/ Microwave and Millimetre-wave Applications), Vol. 1, No. 1, pp. 248-254, Feb. 2007
  17. A. Pirhadi , M. Hakkak, F. Keshmiri, and R. K. Baee, 'Design of Compact Dual Band High Directive Electromagnetic Bandgap (EBG) Resonator Antenna Using Artificial Magnetic Conductor,' IEEE Trans. Antennas and Propagation, Vol. 55, No. 6, pp. 1682-1690, Jun. 2007 https://doi.org/10.1109/TAP.2007.898598
  18. R.gardelli, M. Albani, and F. Capolino, 'Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,' IEEE Trans. Antennas and Propagation, Vol. 54, No. 7, pp. 1979-1990, Jul. 2006 https://doi.org/10.1109/TAP.2006.877172
  19. G. K. Paliekaras, A. P. Feresidis, and J. C. Vardaxoglou, 'Cylindrical Electromagnetic BandGap structures for directive base station antennas', IEEE Antennas and Wireless Propagation Letters, Vol. 3, pp. 87-89, 2004 https://doi.org/10.1109/LAWP.2004.830007
  20. H. Chreim, E. Pointereau, B. Jecko, and P. Dufrane, 'Omnidirectional Electromagnetic BandGap antenna for base station applications', IEEE Antennas and Wireless Propagation Letters, Vol. 6, pp. 499-502, 2007 https://doi.org/10.1109/LAWP.2007.904716
  21. H. Boutayeb, T. A. Denidni, K. Mahdjoubi, A.-C. Tarot, A.-R. Sebak, and L. Talbi, 'Analysis anddesign of a cylindrical EBG-based directive antenna,' IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, pp. 211-219, Jan. 2006 https://doi.org/10.1109/TAP.2005.861560
  22. B. A. Munk, Frequency Selective Surfaces- Theory and Design, John-Wiley & Sons, Inc., pp. 5-6, 2000