DOI QR코드

DOI QR Code

Kinesin superfamily KIF21A와 직접 결합하는 Pcp-2의 규명

Pcp-2 Interacts Directly with Kinesin Superfamily KIF21A Protein

  • 박혜영 (인제대학교 의과대학 생화학교실) ;
  • 김상진 (인제대학교 의과대학 신경과학교실) ;
  • 예성수 (인제대학교 의과대학 생화학교실) ;
  • 장원희 (인제대학교 의과대학 생화학교실) ;
  • 이상경 (인제대학교 의과대학 정신과학교실) ;
  • 박영홍 (인제대학교 의과대학 생화학교실) ;
  • 정용욱 (동국대학교 의과대학 해부학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 김무성 (인제대학교 의과대학 신경외과학교실) ;
  • 석대현 (인제대학교 의과대학 생화학교실)
  • Park, Hye-Young (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Kim, Sang-Jin (Departments of Neurology, College of Medicine, Inje University) ;
  • Ye, Sung-Su (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Jang, Won-Hee (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Lee, Sang-Kyeong (Departments of Psychiatry, College of Medicine, Inje University) ;
  • Park, Yeong-Hong (Departments of Biochemistry, College of Medicine, Inje University) ;
  • Jung, Yong-Wook (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University) ;
  • Kim, Moo-Seong (Departments of Neurosurgery, College of Medicine, Inje University) ;
  • Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
  • 발행 : 2008.08.30

초록

KIF21A는 kinesin superfamily에 속하는 분자 motor로서 미세소관을 따라서 분비소포를 운반한다. 최근의 연구결과 KIF21A 유전자 일부의 missense 돌연변이에 의하여 congenital fibrosis of the extraocular muscles (CFEOM) 1의 유발됨이 밝혀졌다. CFEOM1은 KIF21A의 돌연변이로 인하여 분화 발생과정에 occulo-motor신경과 neuromuscular junction 형성에 필요한 단백질을 이동시키지 못함으로써 유발된다. 본 연구에서는 효모 two-hybrid system을 사용하여 KIF21A의 WD-40 repeat domain과 결합하는 분자량이 작은 Purkinje cell protein-1 (Pcp-2), 또는 L7으로도 알려진 단백질을 분리하였다. Pcp-2는 효모 two-hybrid assay에서 KIF21A와 KIF21B의 WD-40 영역과는 결합하지만 다른 종류의 KIFs와는 결합하지 않았다. 또한 단백질간의 특이적 결합을 pull-down assay로 확인하였으며, 생쥐의 뇌 파쇄액에 Pcp-2 항체로 면역침강을 행하여 KIF21A를 확인한 결과 Pcp-2와 같이 침강하였다. 이러한 결과들은 KIF21A는 Pcp-2와 결합하며, 또한 Pcp-2는 KIF21A의 adaptor 단백질로서 세포 내 KIF21A의 수송에서 매개 단백질로 작용함을 시사한다.

KIF21A is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors, anterograde axonal transporters of cargoes. Recently, congenital fibrosis of the extraocular muscles 1 (CFEOM1) has been shown to result from a small number of recurrent heterozygous missense mutations of KIF21A. CFEOM1 results from the inability of mutated KIF21A to successfully deliver cargoes to the development of the occulo-motor neuron or neuromuscular junction. Here, we used an yeast two-hybrid system to identify a protein that interacts with the WD-40 repeat domain of KIF21A and found a specific interaction with Purkinje cell protein-2 (Pcp-2), a small protein also known as L7. Pcp-2 protein bound to the WD-40 domain of KIF21A and KIF21B but not to other KIFs in yeast two-hybrid assays. In addition, this specific interaction was also observed in the glutathione S-transferase pull-down assay. An antibody to Pcp-2 specifically co-immunoprecipitated KIF21A associated with Pcp-2 from mouse brain extracts. These results suggest that Pcp-2 may be involved in the KIF21A-mediated transport as a KIF21A adaptor protein.

키워드

참고문헌

  1. Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296 https://doi.org/10.1083/jcb.119.5.1287
  2. Berrebi, A. S. and E. Mugnaini. 1992. Characteristics of labeling of the cerebellar Purkinje neuron by L7 antiserum. J. Chem. Neuroanat. 5, 235-243 https://doi.org/10.1016/0891-0618(92)90048-U
  3. Demer, J. L., R. A. Clark and E. C. Engle. 2005. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. Invest. Ophthalmol. Vis. Sci. 46, 530-539
  4. Engle, E. C., B. C. Goumnerov, C. A. McKeown, M. Schatz, D. R. Johns, J. D. Porter and A. H. Beggs. 1997. Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles. Ann. Neurol. 41, 314-325 https://doi.org/10.1002/ana.410410306
  5. Eugster, A., G. Frigerio, M. Dale and R. Duden. 2004. The alpha- and beta'-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol. Biol. Cell 15, 1011-1023 https://doi.org/10.1091/mbc.E03-10-0724
  6. Fong, H. K., J. B. Hurley, R. S. Hopkins, R. Miake-Lye, M. S. Johnson, R. F. Doolittle and M. I. Simon. 1986. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83, 2162-2166
  7. Goldstein, L. S. 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. USA 98, 6999-7003
  8. Hirokawa, N. and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiol. Rev. 88, 1089-1118 https://doi.org/10.1152/physrev.00023.2007
  9. Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526 https://doi.org/10.1126/science.279.5350.519
  10. Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214 https://doi.org/10.1038/nrn1624
  11. Holm, M., C. S. Hardtke, R. Gaudet and X. W. Deng. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20, 118-127 https://doi.org/10.1093/emboj/20.1.118
  12. Jiang, M., M. S. Gold, G. Boulay, K. Spicher, M. Peyton, P. Brabet, Y. Srinivasan, U. Rudolph, G. Ellison and L. Birnbaumer. 1998. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc. Natl. Acad. Sci. USA 95, 3269-3274
  13. Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384 https://doi.org/10.1523/JNEUROSCI.20-17-06374.2000
  14. Karcher, R. L., S. W. Deacon and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27 https://doi.org/10.1016/S0962-8924(01)02184-5
  15. Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. Korean Journal of Life Science 17, 889-895 https://doi.org/10.5352/JLS.2007.17.7.889
  16. Luo, Y. and B. M. Denker. 1999. Interaction of heterotrimeric G protein Galphao with Purkinje cell protein-2. Evidence for a novel nucleotide exchange factor. J. Biol. Chem. 274, 10685-10688 https://doi.org/10.1074/jbc.274.16.10685
  17. Marszalek, J. R., J. A. Weiner, S. J. Farlow, J. Chun and L. S. Goldstein. 1999. Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J. Cell Biol. 145, 469-479 https://doi.org/10.1083/jcb.145.3.469
  18. Miki, H., M. Setou, K. Kaneshiro and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011
  19. Mohn, A. R., R. M. Feddersen, M. S. Nguyen and B. H. Koller. 1997. Phenotypic analysis of mice lacking the highly abundant Purkinje cell- and bipolar neuron-specific PCP2 protein. Mol. Cell Neurosci. 9, 63-76 https://doi.org/10.1006/mcne.1997.0606
  20. Mullen, R. J., E. M. Eicher and R. L. Sidman. 1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. USA 73, 208-212
  21. Nakagawa, T., M. Setou, D. H. Seog, K. Ogasawara, N. Dohmae, K. Takio and N. Hirokawa. 2000. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569-581 https://doi.org/10.1016/S0092-8674(00)00161-6
  22. Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki and N. Hirokawa. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220 https://doi.org/10.1016/0092-8674(94)90012-4
  23. Neer, E. J., C. J. Schmidt, R. Nambudripad and T. F. Smith. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300 https://doi.org/10.1038/371297a0
  24. Nordquist, D. T., C. A. Kozak and H. T. Orr. 1988. cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J. Neurosci. 8, 4780-4789 https://doi.org/10.1523/JNEUROSCI.08-12-04780.1988
  25. Oberdick, J., F. Levinthal and C. Levinthal. 1988. A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron. 1, 367-376 https://doi.org/10.1016/0896-6273(88)90186-9
  26. Okada, Y., H. Yamazaki, Y. Sekine-Aizawa and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780 https://doi.org/10.1016/0092-8674(95)90538-3
  27. Redd, K. J., J. Oberdick, J. McCoy, B. M. Denker and Y. Luo. 2002. Association and colocalization of G protein alpha subunits and Purkinje cell protein 2 (Pcp2) in mammalian cerebellum. J. Neurosci. Res. 70, 631-637 https://doi.org/10.1002/jnr.10460
  28. Saitoh, O., Y. Kubo, M. Odagiri, M. Ichikawa, K. Yamagata and T. Sekine. 1999. RGS7 and RGS8 differentially accelerate G protein-mediated modulation of K+ currents. J. Biol. Chem. 274, 9899-9904 https://doi.org/10.1074/jbc.274.14.9899
  29. Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 3rd Edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York
  30. Seog, D. H., D. H. Lee and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7 https://doi.org/10.3346/jkms.2004.19.1.1
  31. Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87 https://doi.org/10.1038/nature743
  32. Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802 https://doi.org/10.1126/science.288.5472.1796
  33. Simon, M. I., M. P. Strathmann and N. Gautam. 1991. Diversity of G proteins in signal transduction. Science 252, 802-808 https://doi.org/10.1126/science.1902986
  34. Su, Q., Q. Cai, C. Gerwin, C. L. Smith and Z. H. Sheng. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941-953 https://doi.org/10.1038/ncb1169
  35. Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265 https://doi.org/10.1083/jcb.148.6.1255
  36. Valenzuela, D., X. Han, U. Mende, C. Fankhauser, H. Mashimo, P. Huang, J. Pfeffer, E. J. Neer and M. C. Fishman. 1997. G alpha(o) is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc. Natl. Acad. Sci. USA 94, 1727-1732
  37. Vassileva, G., R. J. Smeyne and J. I. Morgan. 1997. Absence of neuroanatomical and behavioral deficits in L7/pcp-2-null mice. Brain Res. Mol. Brain Res. 46, 333-337 https://doi.org/10.1016/S0169-328X(97)00081-8
  38. Wanner, I., S. L. Baader, J. Oberdick and K. Schilling. 2000. Changing subcellular distribution and activity-dependent utilization of a dendritically localized mRNA in developing Purkinje cells. Mol. Cell Neurosci. 15, 275-287 https://doi.org/10.1006/mcne.1999.0824
  39. Yamada, K., C. Andrews, W. M. Chan, C. A. McKeown, A. Magli, T. de Berardinis, A. Loewenstein, M. Lazar, M. O'Keefe, R. Letson, A. London, M. Ruttum, N. Matsumoto, N. Saito, L. Morris, M. Del Monte, R. H. Johnson, E. Uyama, W. A. Houtman, B. de Vries, T. J. Carlow, B. L. Hart, N. Krawiecki, J. Shoffner, M. C. Vogel, J. Katowitz, S. M. Goldstein, A. V. Levin, E. C. Sener, B. T. Ozturk, A. Z. Akarsu, M. C. Brodsky, F. Hanisch, R. P. Cruse, A. A. Zubcov, R. M. Robb, P. Roggenkaemper, I. Gottlob, L. Kowal, R. Battu, E. I. Traboulsi, P. Franceschini, A Newlin, J. L. Demer and E. C. Engle. 2003. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat. Genet. 35, 318-321 https://doi.org/10.1038/ng1261
  40. Zhang, X., H. Zhang and J. Oberdick. 2002. Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: comparison of rodent and human Pcp2 (L7) gene structure and expression. Brain Res. Mol. Brain Res. 105, 1-10 https://doi.org/10.1016/S0169-328X(02)00379-0
  41. Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi and N. Hirokawa. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597 https://doi.org/10.1016/S0092-8674(01)00363-4