DOI QR코드

DOI QR Code

알코올 투여 흰쥐의 간 조직 산화스트레스에 미치는 글루타티온 고함유 효모 Saccharomyces cerevisiae FF-8 균체의 영향

Suppressive Effect of Administrated Glutathione-Enriched Saccharomyces cerevisiae FF-8 on the Oxidative Stress in Alcoholic Fatty Liver

  • 차재영 (대선주조(주) 기술연구소) ;
  • 박상현 ((주)미애부발효과학연구소) ;
  • 허진선 (동아대학교 생명자원과학대학 생명공학과) ;
  • 조영수 (동아대학교 생명자원과학대학 생명공학과)
  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Park, Sang-Hyun (Miabu Fermentation Science Research Institute, Miabu Co. Ltd.) ;
  • Heo, Jin-Sun (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Cho, Young-Su (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • 발행 : 2008.08.30

초록

글루타티온은 간 질환용 치료제 내지는 영양보충제로 시판되고 있다. 이전 실험에서 글루타티온 고함유 효모 Saccharomyces cerevisiae FF-8 균체(FF-8GY) 투여가 사염화탄소 및 알코올성 유발 간독성 개선효과를 나타내었다. 따라서, 알코올성 지방간의 산화 스트레스에 미치는 영향을 조사하기 위하여 시판되고 있는 글루타티온 고함유 효모 추출물(GYE)과 본 실험실에서 분리한 글루타티온 고함유 효모 FF-8GY을 비교실험 하였다. FF-8GY 또는 GYE 투여에 의한 간 조직 중의 산화스트레스 측정지표로서는 과산화지질(TBARS) 및 글루타티온 함량을 측정하였다. TBARS 농도는 간 조직 homogenize 분획에서 알코올 투여 대조군에 비해 FF-8GY 투여 실험군에서 5%수준에서 유의적으로 감소하였으며, GYE 투여에 의해서는 감소경향을 보였다. 간 조직 microsomal 및 mitochondria 분획에서도 같은 경향이 관찰되었다. 이때 간 조직 중의 글루타티온 농도는 정상군 보다 알코올 투여 대조군에서 5%수준에서 유의적으로 감소하였으며, 이러한 감소는 GYE 투여에 의해 더욱 감소되었으나 FF-8GY 투여에 의해서 정상군 수준까지 회복되는 것으로 나타났다. 한편 간조직의 손상정도를 나타내는 또 하나의 지표인 혈청 총단백질 및 알부민 농도는 알코올 처리 대조군에서 낮게 나타난 반면 FF-8GY 투여에 의해 정상군 수준 이상으로 증가하는 것으로 나타났다. 이상의 결과에서 글루타티온 고함유 효모 Saccharomyces cerevisiae FF-8 균체(FF-8GY)의 투여에 따른 알코올성 유발 산화스트레스의 경감 효과는 시판되고 있는 글루타티온 고함유 효모 추출물 보다 더욱 현저한 개선 효과가 있는 것으로 확인되었다.

Glutathione is a well known chemotherapeutic agent for liver disease and is a popular nutritional supplement in the United States. Previous our studies reported the suppressive effects of glutathione-enriched Saccharomyces cerevisiae FF-8 strain (FF-8GY) on carbon tetrachloride- and alcohol-induced hepatotoxicity. The primary objective of this study was to investigate the comparative effects of FF-8GY and commercially available glutathione-enriched yeast extract (GYE) against the oxidative stress in alcohol-induced fatty liver of rats. The lipid peroxidative index (thiobarbituric acid-reactive substances, TBARS) and antioxidant status (reduced glutathione level) were used to monitor those protective roles of FF-8GY or GYE treatment. When the rat was treated alcohol, the TBARS levels in the whole liver and the subfractions of microsomal and mitochondria were significantly increased but these were significantly decreased by FF-8GY treatment and tended to be lowered by GYE treatment. The concentration of hepatic glutathione is known to be closely associated with antioxidant system and this was slightly deplete in the alcohol-induced rats, but this was recovered by treating with FF-8GY. However, the glutathione concentration was more significantly decreased in the GYE supplementation in alcohol feeding rats. Alcohol treatment also negatively affected the serum total protein and albumin, but these were significantly increased near normal levels in FF-8GY coadministered rats. These results suggest that glutathione-enriched Saccharomyces cerevisiae FF-8 strain may have positively mediate the alcohol-induced oxidative stress, and this effect was more pronounced in FF-8GY compared to GYE.

키워드

참고문헌

  1. Aleynik, S. I. and C. S. Lieber. 2003. Polyenylphosphatidylcholine corrects the alcohol-induced hepatic oxidative stress by restoring S-adenosylmethionine. Alcohol Alcohol. 38, 208-212 https://doi.org/10.1093/alcalc/agg066
  2. Beutler, E., O. Duron and B. M. Kelly. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882-888
  3. Catwright, I. J., A. M. Hebachi and J. A. Higgins. 1993. Transit and sorting of apolipoprotein B within the endoplasmic reticulum and Golgi compartments of isolated hepatocyte from normal and orotic acid-fed rats. J. Biol. Chem. 268, 20937-20949
  4. Cha, J. Y., S. H. Park, J. S. Heo, B. K. Park, J. W. Lee and Y. S. Cho. 2008. Culture conditions for glutathione maximum production by Saccharomyces cerevisiae FF-8 in bioreactor. J. Life Sci. 18, 620-624 https://doi.org/10.5352/JLS.2008.18.5.620
  5. Chakkalakal, D. A. 2005. Alcohol-induced bone loss and deficient bone repair. Alcohol. Clin. Exp. Res. 29, 2077-2090 https://doi.org/10.1097/01.alc.0000192039.21305.55
  6. Demori, I., A. Voci, E. Fugassa and B. Burlando. 2006. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol 40, 185-191 https://doi.org/10.1016/j.alcohol.2006.12.006
  7. Drakulic, T., M. D. Temple, R. Guido, M. Breitenbach, P. V. Attfield and I. W. Dawes. 2005. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215-1228 https://doi.org/10.1016/j.femsyr.2005.06.001
  8. Draper, H. H. and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology 186, 421-431 https://doi.org/10.1016/0076-6879(90)86135-I
  9. Duncan, D. B. 1957. Multiple range test for correlated and heteroscedastic means. Biometrics 13, 164-176 https://doi.org/10.2307/2527799
  10. Emberson, J. R. and D. A. Bennett. 2006. Effects of alcohol on risk of coronary heart disease and stroke: causality, bias, or a bit of both. Vasc. Health Risk Manag. 2, 239-249 https://doi.org/10.2147/vhrm.2006.2.3.239
  11. Friedman, R. B., R. E. Anderson, S. M. Entine and S. B. Hirshberg. 1980. Effects of diseases on clinical laboratory tests. Clinical Chemistry 26, 1D-476D
  12. Goel, A., V. Dani and D. K. Dhawan. 2005. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact 156, 131-140 https://doi.org/10.1016/j.cbi.2005.08.004
  13. Grant, C. M., F. H. MacIver and I. W. Dawes. 1996. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29, 511-515 https://doi.org/10.1007/BF02426954
  14. Guerri, C. and S. Grisolia. 1980. Influence of prolonged ethanol intake on the levels and turnover of alcohol and aldehyde dehydrogenase and glutathione. Adv. Exper. Medi. Biol. 126, 365-384 https://doi.org/10.1007/978-1-4684-3632-7_27
  15. Hsu, C. C., C. N. Hiang, Y. C. Hung and M. C. Yin. 2004. Five cysteine-containing compounds have antioxidative activity in Balb/cA mice. J. Nutr. 134, 149-152 https://doi.org/10.1093/jn/134.1.149
  16. Jamieson, D. J. 1998. Oxidative stress responses in the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  17. Jewell, S. A., D. Di Monte, A. Gentile, A. Guglielmi, E. Altomare and E. Albano. 1986. Decreased hepatic glutathione in chronic alcoholic patients. J. Hepatol. 3, 1-6 https://doi.org/10.1016/S0168-8278(86)80139-8
  18. Klatsky, A. L. 2007. Alcohol, cardiovascular diseases and diabetes mellitus. Pharmacol Res. 55, 237-247 https://doi.org/10.1016/j.phrs.2007.01.011
  19. Lee, C. H., J. Y. Cha, B. S. Jun, H. J. Lee, Y. C. Lee, Y. L. Choi and Y. S. Cho. 2005. Antioxidative activity of glutathione- enriched extract from Saccharomyces cerevisiae FF-8 in vitro model system. J. Life Sci. 15, 819-825 https://doi.org/10.5352/JLS.2005.15.5.819
  20. Lee, J. H., N. K. Kim, D. Y. Lee and C. H. Lee. 1999. Protective effect of selected amino acids and food extracts on ethanol toxicity decrement in rat liver. Korean J. Food Sci. Technol. 31, 802-808
  21. Lieber, C. S. 2005. Metabolism of alcohol. Clin. Liver Dis. 9, 1-35 https://doi.org/10.1016/j.cld.2004.10.005
  22. Lindros, K. O. 1995. Alcoholic liver disease: pathobiological aspects. J. Hepatol. 23 (Suppl. 1), 7-15
  23. Lowry, O. H., N. J. Rosebrough and A. L. Farr. 1951. Protein determination with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  24. Mannaa, F., H. H. Ahmed, S. F. Estefan, H. A. Sharaf and E. F. Eskander. 2005. Saccharomyces cerevisiae intervention for reliving flutamide-induced hepatotoxicity in male rats. Pharmazie 60, 689-695
  25. Nordmann, R. 1994. Alcohol and antioxidant systems. Alcohol Alcohol. 29, 513-522
  26. Park, J. C., M. Ok, J. Y. Cha and Y. S. Cho. 2003. Isolation and identification of the glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotechnol. 46, 348-352
  27. Ramirez-Farias, C., E. Madrigal-Santillan, J. Gutieerrez- Salinas, N. Rodriguez-Sanchez, M. Martinez-Cruz, I. Valle- Jones, I. Gramlich-Martinez, A. Hernandez-Ceruelos and J. A. Morales-Gonzalez. 2008. Protective effect of some vitamins against the toxic action of ethanol on liver regeneration induced by partial hepatectomy in rats. World J. Gastroenterol. 14, 899-907 https://doi.org/10.3748/wjg.14.899
  28. Saravanan, N. and N. Nalini. 2008. Hemidesmus indicus protects against ethanol-induced liver toxicity. Cell Mol. Biol. Lett. 13, 20-37 https://doi.org/10.2478/s11658-007-0032-z
  29. Shaw, S., E. Jayatilleke, W. A. Ross, E. R. Gordon and C. S. Lieber. 1981. Ethanol-induced lipid peroxidation: potentiation by long-term alcohol feeding and attenuation by methionine. J. Lab. Clinical. Med. 98, 417-424
  30. Shon, M. Y., J. Y. Cha, C. H. Lee, S. H. Park and Y. S. Cho. 2007. Protective effect of administrated glutathioneenriched Saccharomyces cerevisiae FF-8 against carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. Food Sci. Biotechnol. 16, 967-974
  31. Simic, M. G. 1988. Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutant Res. 202, 377-386 https://doi.org/10.1016/0027-5107(88)90199-6
  32. Stephen, D. W. and D. J. Jamieson. 1996. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 141, 207-212 https://doi.org/10.1111/j.1574-6968.1996.tb08386.x
  33. Stipanuk, M. H., R. M. Coloso, R. A. G. Garcia and M. F. Banks. 1992. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J. Nutr. 122, 420-427 https://doi.org/10.1093/jn/122.3.420
  34. Sugiyama, Y. and K. Yamamoto. 1998. The protective effect of glutathione-enriched yeast extract on acetaminophen- induced liver damage in rats. J. Jpn. Soc. Nutr. Food 51, 189-193 https://doi.org/10.4327/jsnfs.51.189
  35. Thor, H., R. Moldeus and S. Orrenius. 1979. Metabolic activation and hepatotoxicity: effect of cysteine, N-acetlycysteine, and methione on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatotocytes. Arch. Biochem. Biopys. 192, 405-413 https://doi.org/10.1016/0003-9861(79)90109-7
  36. Valko, M., D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  37. Yin, M., K. Ikejima, G. E. Arteel, V. Seabra, B. U. Bradford, H. Kono, I. Rusyn and R. G. Thurman. 1998. Glycine accelerates recovery from alcohol-induced liver injury. J. Pharmacol. Exp. Ther. 286, 1014-1019
  38. Zima, T., L. Fialova, O. Mestek, M. Janebova, J. Crkovska, I. Malbohan, S. Stipek, L. Mikulikova and P. Popov. 2001. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J. Biomed. Sci. 8, 59-70 https://doi.org/10.1007/BF02255972

피인용 문헌

  1. Effect of betaine on the hepatic damage from orotic acid-induced fatty liver development in rats 2011, https://doi.org/10.3109/14756366.2011.641014
  2. Antioxidative Activity and Chemical Characteristics of Leaf and Fruit Extracts from Thuja orientalis vol.21, pp.5, 2011, https://doi.org/10.5352/JLS.2011.21.5.746
  3. Effects of Monascus-fermented Angelica gigas Nakai on the Contents of Serum Lipid and Tissue Lipid Peroxidation in Alcohol Feeding Rats vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1371