Optimized Substrate Concentrations for Production of Long-Chain Isomaltooligosaccharides Using Dextransucrase of Leuconostoc mesenteroides B-512F

  • Lee, Min-Sung (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Cho, Seung-Kee (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, So-Young (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2008.06.30

Abstract

Isomaltooligosaccharide (IMO) is a promising dietary component with prebiotic effect, and the long-chain IMOs are preferred to short chain ones owing to the longer persistence in the colon. To establish the optimal process for synthesis of long-chain IMOs, we systematically examined the reaction condition of dextransucrase of Leuconostoc mesenteroides B-512F by changing the ratio of sucrose to maltose (varying as 1:4, 1:2, 1:1, and 2:1) and amount of each sugar (from 2% to 20%). As a result, a ratio of 2:1 (sucrose to maltose, 10:5% or 20:10%, w/v) was determined as an optimal condition for long-chain IMO synthesis (DP3-DP9) with relatively higher yields (70-90%, respectively).

Keywords

References

  1. Chung, C. H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329
  2. Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361 https://doi.org/10.1016/S0924-2244(96)10038-8
  3. Debnam, E. S., E. E. Denholm, and G. K. Grimble. 1998. Acute and chronic exposure of rat intestinal mucosa to dextran promotes SGLTI-mediated glucose transport. Eur. J. Clin. Investig. 28: 651-658 https://doi.org/10.1046/j.1365-2362.1998.00352.x
  4. Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412
  5. Hasler, C. M. 1996. Functional foods: The western perspective. Nutr. Rev. 54: 6-10 https://doi.org/10.1111/j.1753-4887.1996.tb03810.x
  6. Kaneko, T., T. Kohmoto, H. Kikuchi, M. Shiota, H. Iino, and T. Mitsuoka. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal Bifidobacteria. Biosci. Biotech. Biochem. 58: 2288-2290 https://doi.org/10.1271/bbb.58.2288
  7. Kim, S. J., C. M. Lee, M. Y. Kim, Y. S. Yeo, S. H. Yoon, H. C. Kang, and B. S. Koo. 2007. Screening and characterization of an enzyme with $\beta$-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17: 905-912
  8. Kitaoka, M. and J. F. Robyt. 1998. Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC. Enzyme Microb. Technol. 23: 386-391 https://doi.org/10.1016/S0141-0229(98)00060-X
  9. Kuriki, T., M. Tsuda, and T. Imanaka. 1992. Continuous production of panose by immobilized neopullulanase. J. Ferment. Bioeng. 73: 198-202 https://doi.org/10.1016/0922-338X(92)90160-V
  10. Miller, A. W., S. H. Eklund, and J. F. Robyt. 1986. Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 147: 119-133 https://doi.org/10.1016/0008-6215(86)85011-X
  11. Newbrun, E. and J. Carlsson. 1969. Reaction rate of dextransucrase from Streptococcus sanguis in the presence of various compounds. Arch. Oral Biol. 14: 461-466 https://doi.org/10.1016/0003-9969(69)90139-3
  12. Olano-Martin, E., K. C. Mountzouris, G. R. Gibson, and R. A. Rastall. 2000. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br. J. Nutr. 83: 247-255 https://doi.org/10.1017/S0007114500000325
  13. Remaud-Simeon, M., R. M. Willemot, P. Sarcabal, G. P. De Montalk, and P. Monsan. 2000. Glucansucrase: Molecular engineering and oligosaccharide synthesis. J. Mol. Catal. B Enzym. 10: 117-128 https://doi.org/10.1016/S1381-1177(00)00119-3
  14. Robyt, J. F. 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168 https://doi.org/10.1016/S0065-2318(08)60193-6
  15. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202 https://doi.org/10.1016/0008-6215(94)84285-X
  16. Robyt, J. F. and S. H. Eklund. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B- 512F dextransucrase. Carbohydr. Res. 121: 279-286 https://doi.org/10.1016/0008-6215(83)84024-5
  17. Robyt, J. F. and T. F. Walseth. 1978. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 61: 433-445 https://doi.org/10.1016/S0008-6215(00)84503-6
  18. Ryu, H. J., D. Kim, E. S. Seo, H. K. Kang, J. H. Lee, S. H. Yoon, et al. 2004. Identification of amino-acids residues for key role in dextransucrase activity of Leuconostoc mesenteroides B- 742CB. J. Microbiol. Biotechnol. 14: 1075-1080
  19. Seo, D. M., S. Y. Kim, H. J. Eom, and N. S. Han. 2007. Synbiotic synthesis of oligosaccharides during milk fermentation by addition of Leuconostoc starter and sugars. J. Microbiol. Biotechnol. 17: 1758-1764
  20. Takata, H., T. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, and T. Imanaka. 1992. Action of neopullulanase: Neopullulanase catalyzes both hydrolysis and transglycosylation at ${\alpha}-(1\rightarrow4)$- and ${\alpha}-(1\rightarrow6)$-glucosidic linkages. J. Biol. Chem. 267: 18447-18452
  21. Yoo, S. K., D. Kim, and D. F. Day. 2001. Co-production of dextran and mannitol by Leuconostoc mesenteroides. J. Microbiol. Biotechnol. 11: 880-883
  22. Yoo, S. K., Y. S. Chang, and S. S. Hur. 2004. A simple batch fermentation for production of isomaltooligosaccharides by Leuconostoc mesenteroides. Food Sci. Biotechnol. 13: 240-243