Riboprint and Virulence Gene Patterns for Bacillus cereus and Related Species

  • Kim, Young-Rok (Institute of Life Science and Resources, and Graduate School of Biotechnology, Kyung Hee University) ;
  • Batt, Carl A. (Department of Food Science, Cornell University)
  • Published : 2008.06.30

Abstract

A total of 72 Bacillus cereus strains and 5 Bacillus thuringiensis strains were analyzed for their EcoRI ribogroup by ribotyping and for the presence or absence of seven virulence-associated genes. From these 77 strains, 42 distinctive ribogroup were identified using EcoRI, but the two species could not be discriminated by their EcoRI ribogroup. The 77 strains were also examined by PCR for the presence of seven virulence-associated genes, cerAB, pi-plc, entFM, bceT, hblA, hblC, and hblD. All five Bacillus thuringiensis strains were positive for these genes. Although differences in the patterns of virulence genes were observed among the different B. cereus strains, within any given ribogroup the patterns of the seven virulence genes was the same. Pulsed-field gel electrophoresis (PFGE) analysis in combination with available chromosomal maps for a selected group of B. cereus strains revealed significant differences in their chromosome size and the placement of virulence genes. Evidence for significant rearrangements within the B. cereus chromosome suggests the mechanism through which the pattern of virulence-associated genes varies. The results suggest linkage between ribogroups and virulence gene patterns as well as no apparent containment of the latter within any particular species boundary.

Keywords

References

  1. Agata, N., M. Ohta, Y. Arakawa, and M. Mori. 1995. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141: 983-988 https://doi.org/10.1099/13500872-141-4-983
  2. Anderssson, M. A., R. Mikkola, J. Helin, M. C. Andersson, and M. Salkinoja-Salonen. 1998. A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl. Environ. Microbiol. 64: 1338-1343
  3. Asano, S., Y. Nukumizu, H. Bando, T. Iizuko, and T. Yamamoto. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 1054-1057
  4. Ash, C., J. A. E. Farrow, M. Dorsch, E. Stackebrandt, and M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16s rRNA. Int. J. Syst. Bacteriol. 41: 343-346 https://doi.org/10.1099/00207713-41-3-343
  5. Batt, C. A. 1997. Molecular diagnostics for dairy-borne pathogens. J. Dairy Sci. 80: 220-229 https://doi.org/10.3168/jds.S0022-0302(97)75931-9
  6. Beecher, D. J., J. L. Schoeni, and A. C. L. Wong. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428
  7. Bruce, J. L., R. J. Hubner, E. M. Cole, C. I. McDowell, and J. A. Webster. 1995. Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 92: 5229-5233
  8. Carlson, C. R., D. A. Caugant, and A.-B. Kolsto. 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 1719-1725
  9. Carlson, C. R., A. Gronstad, and A.-B. Kolsto. 1992. Physical maps of the genomes of three Bacillus cereus strains. J. Bacteriol. 174: 3750-3756 https://doi.org/10.1128/jb.174.11.3750-3756.1992
  10. Carlson, C. R., T. Johansen, and A.-B. Kolsto. 1996. The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol. Lett. 141: 163-167 https://doi.org/10.1111/j.1574-6968.1996.tb08379.x
  11. Carlson, C. R., T. Johansen, M.-M. Lecadet, and A.-B. Kolsto. 1996. Genomic organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner 1715. Microbiology 142: 1625-1634 https://doi.org/10.1099/13500872-142-7-1625
  12. Carlson, C. R. and A.-B. Kolsto. 1993. A complete physical map of a Bacillus thuringiensis chromosome. J. Bacteriol. 175: 1053-1060 https://doi.org/10.1128/jb.175.4.1053-1060.1993
  13. Carlson, C. R. and A.-B. Kolsto. 1994. A small (2.4 Mb) Bacillus cereus chromosome corresponds to a conserved region of a larger (5.3Mb) Bacillus cereus chromosome. Mol. Microbiol. 13: 161-169 https://doi.org/10.1111/j.1365-2958.1994.tb00411.x
  14. Chen, M. L. and H. Y. Tsen. 2002. Discrimination of Bacillus cereus and Bacillus thuringiensis with 16S rRNA and gyrB gene based PCR primers and sequencing of their annealing sites. J. Appl. Microbiol. 92: 912-919 https://doi.org/10.1046/j.1365-2672.2002.01606.x
  15. Damgaard, P. H. 1995. Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immun. Med. Microbiol. 12: 245-250 https://doi.org/10.1111/j.1574-695X.1995.tb00199.x
  16. Damgaard, P. H., D. S. Jacobsen, and J. Sorensen. 1996. Development and application of a primer set for specific detection of Bacillus thuringiensis and Bacillus cereus in soil using magnetic capture hybridization and PCR amplification system. Appl. Microbiol. 19: 436-441 https://doi.org/10.1016/S0723-2020(96)80074-9
  17. Damgaard, P. H., H. D. Larsen, B. M. Hansen, J. Bresciani, and K. Jorgensen. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23: 146-150 https://doi.org/10.1111/j.1472-765X.1996.tb00051.x
  18. Gilmore, M. S., A. L. Cruz-Rodz, M. Leimeister-Wachter, J. Kreft, and W. Goebel. 1989. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: Nucleotide sequence and genetic linkage. J. Bacteriol. 171: 744-753 https://doi.org/10.1128/jb.171.2.744-753.1989
  19. Gonzalez, J. M. Jr. and B. C. Carlton. 1984. A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid 11: 28-38 https://doi.org/10.1016/0147-619X(84)90004-0
  20. Gonzalez, J. M. Jr., B. J. Brown, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for $\delta$- endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79: 6951-6955
  21. Granum, P. E., A. Andersson, D. Gayther, M. Giffel, H. Larsen, T. Lund, and K. O'Sullivan. 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol. Lett. 141: 145-149 https://doi.org/10.1111/j.1574-6968.1996.tb08376.x
  22. Hansen, B. M. and N. B. Hendriksen. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185- 189 https://doi.org/10.1128/AEM.67.1.185-189.2001
  23. Helgason, E., O. A. Okstad, D. A. Caugant, H. A. Johansen, A. Fouet, M. Mock, I. Hegna, and A.-B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627-2630 https://doi.org/10.1128/AEM.66.6.2627-2630.2000
  24. Ibuki, S. and N. Fujiyoshi. 1972. Bacterial fly-larva-killing agent. U.S. Patent 3,632,747
  25. Ikezawa, H., M. Matsushita, M. Tomita, and R. Taguchi. 1986. Effect of metal ions on sphingomyelinase activity of Bacillus cereus. Arch. Biochem. Biophys. 249: 588-595 https://doi.org/10.1016/0003-9861(86)90037-8
  26. Ivanova, N., A. Sorokin, I. Anderson, N. Galleron, B. Candelon, V. Kapatral, et al. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91 https://doi.org/10.1038/nature01582
  27. Jackson, S. G., R. B. Goodbrand, R. Ahmed, and S. Kasatiya. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21: 103-105 https://doi.org/10.1111/j.1472-765X.1995.tb01017.x
  28. Jarrett, P. and M. Stephenson. 1990. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl. Environ. Microbiol. 56: 1608- 1614
  29. Kim, H. T., G. M. Seo, K. H. Jung, S. J. Kim, J. C. Kim, K. G. Oh, B.-S. Koo, and Y. G. Chai. 2007. Generation of a specific marker to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. J. Microbiol. Biotechnol. 17: 806- 811
  30. Kim, Y.-R., J. Czajka, and C. A. Batt. 2000. Development of a fluorogenic probe-based PCR assay for detection of Bacillus cereus in nonfat dry milk. Appl. Environ. Microbiol. 66: 1453- 1459 https://doi.org/10.1128/AEM.66.4.1453-1459.2000
  31. Kolsto, A.-B., A. Gronstad, and H. Oppegaard. 1990. Physical map of the Bacillus cereus chromosome. J. Bacteriol. 172: 3821-3825 https://doi.org/10.1128/jb.172.7.3821-3825.1990
  32. Kramer, J. M. and R. J. Gilbert. 1989. Bacillus cereus and other Bacillus species, pp. 21-70. In M. P. Doyle (ed.), Foodborne Bacterial Pathogen. Marcel Dekker, NewYork
  33. Kuppe, A., L. M. Evans, D. A. McMillen, and O. H. Griffith. 1989. Phosphatidylinositol-specific phospholipase C of Bacillus cereus: Cloning, sequencing, and relationship to other phospholipases. J. Bacteriol. 171: 6077-6083 https://doi.org/10.1128/jb.171.11.6077-6083.1989
  34. Kvistgaard, M. 1994. Mikrobiologiske bekempelsesmidler (In Danish). Miljoprojekt 256. Danish Environmental Protection Agency, Copenhagen, Denmark
  35. Lechner, M., T. Kupke, S. Stefanovic, and F. Gotz. 1989. Molecular characterization and sequence of phosphatidylinositolspecific phospholipase C of Bacillus thuringiensis. Mol. Microbiol. 3: 621-626 https://doi.org/10.1111/j.1365-2958.1989.tb00209.x
  36. Lund, T., M.-L. De Buyser, and P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261 https://doi.org/10.1046/j.1365-2958.2000.02147.x
  37. Lund, T. and P. E. Granum. 1996. Characterization of a nonhemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett 141: 151-156 https://doi.org/10.1111/j.1574-6968.1996.tb08377.x
  38. Notermans, S. and C. A. Batt. 1998. A risk assessment approach for food-borne Bacillus cereus and its toxins. Soc. Appl. Microbiol. Symp. Ser. 27: 51S-61S
  39. Park, S.-H., H.-J. Kim, J.-H. Kim, T.-W. Kim, and H.-Y. Kim. 2007. Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR. J. Microbiol. Biotechnol. 17: 1177-1182
  40. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559
  41. Ray, E. E. 1991. Pesticides derived from plants and other organisms, pp. 585-636. In W. J. Hayes and E. R. Laws Jr. (eds.), Handbook of Pesticide Toxicology. Academic Press, San Diego
  42. Ryan, P. A., J. D. MacMillan, and B. A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551-2556 https://doi.org/10.1128/jb.179.8.2551-2556.1997
  43. Schmitt, N., E. J. Bowmer, and B. A. Willoughby. 1976. Food poisoning outbreak attributed to Bacillus cereus. Can. J. Publ. Health 67: 418-422
  44. Shinagawa, K., J. Sugiyama, T. Terada, N. Matsusaka, and S. Sugii. 1991. Improved methods for purification of an enterotoxin produced by Bacillus cereus. FEMS Microbiol. Lett. 64: 1-5
  45. Shisa, N., N. Wasano, A. Ohgushi, D.-H. Lee, and M. Ohba. 2002. Extremely high frequency of common flagellar antigens between Bacillus thuringiensis and Bacillus cereus. FEMS Microbiol. Lett. 213: 93-96 https://doi.org/10.1111/j.1574-6968.2002.tb11291.x
  46. Vilas-Boas, G., V. Sanchis, D. Lereclus, M. V. F. Lemos, and D. Bourguet. 2002. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 1414-1424 https://doi.org/10.1128/AEM.68.3.1414-1424.2002