Extracellular 5-Aminolevulinic Acid Production by Escherichia coli Containing the Rhodopseudomonas palustris KUGB306 hemA Gene

  • Choi, Han-Pil (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Young-Mi (School of Life Sciences and Biotechnology, Korea University) ;
  • Yun, Cheol-Won (School of Life Sciences and Biotechnology, Korea University) ;
  • Sung, Ha-Chin (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2008.06.30

Abstract

The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'-phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).

Keywords

References

  1. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthetase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554 https://doi.org/10.1023/A:1005520007230
  2. Choi, H. P., J. W. Hong, K. H. Rhee, and H. C. Sung. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol. Lett. 236: 175-181 https://doi.org/10.1111/j.1574-6968.2004.tb09644.x
  3. Choi, H. P., H. J. Kang, H. C. Seo, and H. C. Sung. 2002. Isolation and identification of photosynthetic bacterium useful for wastewater treatment. J. Microbiol. Biotechnol. 12: 643-648
  4. Fu, W., J. Lin, and P. Cen. 2007. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biotechnol. 75: 777-782 https://doi.org/10.1007/s00253-007-0887-y
  5. Guan, K. L. and J. E. Dixon. 1991. Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione Stransferase. Anal. Biochem. 192: 262-267 https://doi.org/10.1016/0003-2697(91)90534-Z
  6. Jordan, P. M. 1991. Biosynthesis of tetrapyrroles, pp. 1-24. In A. Neuberger and L. L. M. van Deenen (eds.). New Comprehensive Biochemistry, Vol. 19. Elsevier, Amsterdam, The Netherlands
  7. Lascelles, J. 1978. Regulation of pyrrole synthesis, pp. 795- 808. In R. K. Clayton and W. R. Sistrom (eds.), The Photosynthetic Bacteria. Plenum Press, New York
  8. Lee, D. H., W. J. Jun, K. M. Kim, D. H. Shin, H. Y. Cho, and B. S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using D-glucose. Enzyme Microb. Technol. 32: 27-34 https://doi.org/10.1016/S0141-0229(02)00241-7
  9. Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69: 470-476 https://doi.org/10.1271/bbb.69.470
  10. Lee, S.-Y. and D.-I. Kim. 2006. Perfusion cultivation of transgenic Nicotiana tabacum suspensions in bioreactor for recombinant protein production. J. Microbiol. Biotechnol. 16: 673-677
  11. Levy, J. G. 1995. Photodynamic therapy. Trends Biotechnol. 13: 14-18 https://doi.org/10.1016/S0167-7799(00)88895-2
  12. Li, J. M., O. Brathwaite, S. D. Cosloy, and C. S. Russel. 1989. 5-Aminolevulinic acid synthesis in Escherichia coli. J. Bacteriol. 171: 2547-2552 https://doi.org/10.1128/jb.171.5.2547-2552.1989
  13. Luond, R. M., J. Walker, and R. W. Neier. 1992. Assessment of the active site requirements of 5-aminolevulinic acid dehydratase: Evaluation of substrate and product analogues as competitive inhibitors. J. Org. Chem. 57: 5005-5013 https://doi.org/10.1021/jo00044a041
  14. Malik, Z., J. Hanania, and Y. Nitzan. 1990. New trends in photobiology: Bactericidal effect of photoactivated porphyrins - an alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B Biol. 5: 281-293 https://doi.org/10.1016/1011-1344(90)85044-W
  15. Mauzerall, D. and S. Granick. 1956. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
  16. Nishikawa, S., K. Watanabe, T. Tanaka, N. Miyachi, Y. Hotta, and Y. Murooka. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798-804 https://doi.org/10.1016/S1389-1723(99)80156-X
  17. Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz. 1988. Porphyric insecticides. 1. Concept and phenomenology. Pesticide Biochem. Physiol. 30: 111-127
  18. Rebeiz, C. A., A. Montazer-Zouhoor, J. M. Mayasich, B. C. Triphthy, S. M. Wu, and C. C. Rebeiz. 1988. Photodynamic herbicides: Recent development and molecular basis of selectivity. CRC Crit. Rev. Plant. Sci. 6: 385-406 https://doi.org/10.1080/07352688809382256
  19. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  20. Sasaki, K., T. Tanaka, and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes, pp. 247-291. In A. M. Martin (ed.), Bioconversion of Waste Materials to Industrial Products. Blackie Academic and Professional, London, England
  21. Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459 https://doi.org/10.1021/bp00029a001
  22. Seo, H.-P., K.-I. Jo, C.-W. Son, J.-K. Yang, C.-H. Chung, S.-W. Nam, S.-K. Kim, and J.-W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380
  23. Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5- aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579- 1584
  24. Song, S. K., Y.-S. Jeong, P.-H. Kim, and G.-T. Chun. 2006. Effects of dissolved oxygen level on avermectin B1a production by Streptomyces avermitilis in computer-controlled bioreactor cultures. J. Microbiol. Biotechnol. 16: 1690-1698
  25. Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6: 127-135
  26. Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560- 3566
  27. Vladimir, Y. B., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin B12 biosynthesis. Crit. Rev. Biotechnol. 17: 21-37 https://doi.org/10.3109/07388559709146605
  28. Xie, L., M. A. Eiteman, and E. Altman. 2003. Production of 5- aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol. Lett. 25: 1751-1755 https://doi.org/10.1023/A:1026035912038
  29. Xie, L., D. Hall, M. A. Eiteman, and E. Altman. 2003. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biotechnol. 63: 267-273 https://doi.org/10.1007/s00253-003-1388-2