Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 11 Issue 3
- /
- Pages.301-314
- /
- 2008
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios
긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식
Abstract
The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.
기존의 이벤트 인식은 한정된 규칙 기반으로 이루어졌고, 시나리오 해석은 확률 자료의 크기로 많은 학습 시간이 필요했다. 본 논문에서는 객체로부터 특징 벡터를 추출하고 각 객체의 행동 양식을 분석하여 현재 객체의 이벤트를 인식하는 방법과 확률 모델을 기반으로 본 논문에서 정의한 긴급 상황 시나리오를 해석할 수 있는 방법을 제안한다. 독립 객체의 이벤트 규칙은 주-이벤트, 움직임-이벤트, 상호-이벤트, 그리고 'FALL DOWN' 이벤트로 구성되며, 객체의 특징 벡터와 베이지안 네트워크에 의해 학습된 분할 움직임 방향 벡터(SMOV)를 통해 정의된다. 긴급 상황 시나리오는 현재 이벤트의 상태와 사후 확률에 의해 분석된다. 본 논문에서는 기존 방법에 비해 다양한 이벤트를 정의하였고 이벤트 간의 독립성을 높여 확장성이 용이하도록 하였다. 그리고 객체 추적만을 통해 얻을 수 없는 의미론적 정보를 규칙과 확률을 기반으로 획득할 수 있었다.
Keywords