Abstract
Searching a location of the copied video in video database, signatures should be robust to video reediting, channel noise, time variation of frame rate. Several kinds of signatures has been proposed. Ordinal signature, one of them, is difficult to describe the spatial characteristics of frame due to the site of fixed window, $N{\times}N$, which is compute the average gray value. In this paper, I studied an algorithm of sequence matching in video copy detection for the copyright protection, employing the R-tree index method for retrieval and suggesting a robust ordinal signatures for the original video clips and the same signatures of the pirated video. Robust ordinal has a 2-dimensional vector structures that has a strong to the noise and the variation of the frame rate. Also, it express as MBR form in search space of R-tree. Moreover, I focus on building a video copy detection method into which content publishers register their valuable digital content. The video copy detection algorithms compares the web content to the registered content and notifies the content owners of illegal copies. Experimental results show the proposed method is improve the video matching rate and it has a characteristics of signature suitable to the large video databases.
비디오 데이터베이스에서 복사본의 위치를 검출하기 위해서는 비디오의 특징(signature)이 비디오의 재편집(reediting), 채널 잡음, 시간적인 프레임 율(frame rate) 변화에 강한 특성을 지녀야 한다. 여러 가지 시그네쳐중 하나인 오디널(ordinal) 시그네쳐는 평균 명암도 값을 구하는 고정 윈도우(fixed window) $N{\times}N$의 크기에 따라 프레임의 공간적인 특징을 나타내기 어렵다. 본 논문은 인터넷상에서 이미 배포된 비디오, 위조된 비디오의 검출을 위해 키 프레임으로 정합하지 않고 연속적인 비디오 프레임에서 공간의 변화특성인 기존의 오디널을 개선한 변형된 robust 오디널 특징을 제안하였다. Robust 오디널은 2차원 벡터 구조를 가지고 있어 비디오의 잡음과 프레임 율의 변화에 강한 특성을 가지고 있으며, 검색공간인 R-트리 공간에서 MBR 형태로 표현될 수 있다. 또한 비디오 복사 검출에 필수적인 대용량 데이터베이스 검색에 적합한 R-트리 구조를 이용하여 정확히 정합되는 프레임의 위치를 찾아내고, n차원 입력의 구조를 가지고 있는 R-트리의 입력으로 robust 오디널 특징이 적합하게 사용되었다. 실험결과 비디오 정합율이 향상되고 대용량 데이터베이스에 알맞은 특징을 가지고 있음을 확인하였다.