시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field

  • 박기춘 (경상북도농업기술원 영양고추시험장) ;
  • 김영숙 (경상북도농업기술원 영양고추시험장) ;
  • 권오훈 (경상북도농업기술원 영양고추시험장) ;
  • 권태룡 (경상북도농업기술원 영양고추시험장) ;
  • 박상구 (경상북도농업기술원 영양고추시험장)
  • Park, Kee-Choon (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kim, Yeong-Suk (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kwon, Oh-Hoon (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kwon, Tae-Ryong (Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Park, Sang-Gu (Gyeongsangbuk-do Agricultural Research & Extension Services)
  • 투고 : 2008.01.25
  • 심사 : 2008.02.20
  • 발행 : 2008.04.30

초록

다비작물이면서 재배기간이 긴 고추 재배지에서 당년의 효과를 기대하고 시용되는 유기물은 각 지역마다 사용되는 종류가 다양함으로 이들이 토양 미생물 상에 미치는 효과를 검토할 필요가 있다. 본 연구에서는 우리나라에서 쉽게 구할 수 있는 수피, 우분, 왕겨, 볏짚과 이것으로 만든 퇴비가 토양의 화학적 미생물적 특성에 미치는 효과를 분석하였다. 퇴비가 pH를 포함한 토양 화학적 특성 변화에 가장 효과적이었고 수피는 유기물 증가에 기여하였다. 인지질 지방산의 토양 생물학적 지표 분석에서 퇴비는 방선균과 균근균 밀도 증가에 효과적이었으며, y19:0/18:1w7c와 단불포화/포화 지방산의 비율도 증가시켰다. 수피는 곰팡이 밀도 증가에 효과적이었고, 왕겨와 볏짚은 퇴비와 수피 만큼의 토양 미생물상 군락에 미치는 효과는 적었으나 왕겨가 볏짚 보다 컸다. 그리고 전체 미생물 상을 관찰하기 위하여 PLFA와 Biolog EcoPlate 성적을 주요인 분석으로 살펴 본 결과 수피가 두 가지 방법 모두에서 다른 처리 특히 퇴비 처리구와는 구별 되는 미생물 군을 형성함을 보여주었다. 따라서퇴비와 수피가 토양의 화학적 특성과 미생물상 변화에 가장 큰 영향을 미쳤고, 특히 토양 미생물상에 미치는 두 유기 토양 개량제의 영향은 방향이 크게 다르므로 신선 수피의 토양 개량제로의 이용은 더 많은검토가 필요한 것으로 사료된다.

Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

키워드

참고문헌

  1. Bardgett, R.D., P.J. Hobbs, and A. Frostegard. 1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fert. Soils 22:261-264. https://doi.org/10.1007/BF00382522
  2. Bardgett, R.D. and E. McAlister. 1999. The measurement of soil fungal : bacterial biomass ratios as an indicator of ecosystem selfregulation in temperate meadow grasslands. Biol. Fert. Soils 29:282-290. https://doi.org/10.1007/s003740050554
  3. Borga, P., M. Nilsson, and A. Tunlid. 1994. Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty-acid analysis. Soil Biol. Biochem. 26:841-848. https://doi.org/10.1016/0038-0717(94)90300-X
  4. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  5. Bossio, D.A., K.M. Scow, N. Gunapala, and K.J. Graham. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12. https://doi.org/10.1007/s002489900087
  6. Boyle, S.A., R.R. Yarwood, P.J. Bottomley, and D.D. Myrold. 2008. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol. Biochem. 40:443-451. https://doi.org/10.1016/j.soilbio.2007.09.007
  7. Calbrix, R.L., S. Barray, O. Chabrerie, L. Fourrie, and K. Laval. 2007. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl. Soil Ecol. 35:511-522. https://doi.org/10.1016/j.apsoil.2006.10.007
  8. Carrera, L.M., J.S. Buyer, B. Vinyard, A.A. Abdul-Baki, L.J. Sikora, and J.R. Teasdale. 2007. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl. Soil Ecol. 37:247-255. https://doi.org/10.1016/j.apsoil.2007.08.003
  9. Chang, C.Y., C.C. Chao, and W.L. Chao. 2008. Community structure and functional diversity of indigenous fluorescent Pseudomonas of long-term swine compost applied maize rhizosphere. Soil Biol. Biochem. 40:495-504 https://doi.org/10.1016/j.soilbio.2007.09.014
  10. Chang, E.H., R.S. Chung, and Y.H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53:132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x
  11. Clegg, C.D. 2006. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl. Soil Ecol. 31:73-82. https://doi.org/10.1016/j.apsoil.2005.04.003
  12. Demoling, F., L.O. Nilsson, and E. Baath. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem. 40:370-379. https://doi.org/10.1016/j.soilbio.2007.08.019
  13. Fierer, N., J.P. Schimel, and P.A. Holden. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35:167-176. https://doi.org/10.1016/S0038-0717(02)00251-1
  14. Frostegard, A. and E. Baath. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 22:59-65. https://doi.org/10.1007/BF00384433
  15. Garland, J.L. 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28:213-221. https://doi.org/10.1016/0038-0717(95)00112-3
  16. Gasser, M.O., A. Ndayegamiye, and M.R. Laverdiere. 1995. Shortterm effects of crop rotations and wood-residue amendments on potato yields and soil properties of a sandy loam soil. Can. J. Soil Sci. 75:385-390. https://doi.org/10.4141/cjss95-055
  17. Gomez, E., L. Ferreras, and S. Toresani. 2006. Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technol. 97:1484-1489. https://doi.org/10.1016/j.biortech.2005.06.021
  18. Grayston, S.J., C.D. Campbell, R.D. Bardgett, J.L. Mawdsley, C.D. Clegg, K. Ritz, B.S. Griffiths, J.S. Rodwell, S.J. Edwards, W.J. Davies, D.J. Elston, and P. Millard. 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil Ecol. 25:63-84. https://doi.org/10.1016/S0929-1393(03)00098-2
  19. Grigera, M.S., R.A. Drijber, K.M. Eskridge, and B.J. Wienhold. 2006. Soil microbial biomass relationships with organic matter fractions in a Nebraska corn field mapped using apparent electrical conductivity. Soil Sci. Soc. Am. J. 70:1480-1488. https://doi.org/10.2136/sssaj2005.0331
  20. Institute of Agricultural Science. 1988. Methodology of soil chemical analysis. Rural Development Administration. pp26-114.
  21. Iyyemperumal, K. and W. Shi. 2007. Soil microbial community composition and structure: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant Soil 292:233-242. https://doi.org/10.1007/s11104-007-9219-3
  22. Kaur, A., A. Chaudhary, R. Choudhary, and R. Kaushik. 2005. Phospholipid fatty acid - A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. India 89:1103-1112.
  23. Khan, A.U.H., M. Iqbal, and K.R. Islam. 2007. Dairy manure and tillage effects on soil fertility and corn yields. Bioresource Technol. 98:1972-1979. https://doi.org/10.1016/j.biortech.2006.07.041
  24. Larkin, R.P., C.W. Honeycutt, and T.S. Griffin. 2006. Effect of swine and dairy manure amendments on microbial communities in three soils as influenced by environmental conditions. Biol. Fert. Soils 43:51-61. https://doi.org/10.1007/s00374-005-0060-7
  25. Li, W.H., C.B. Zhang, H.B. Jiang, G.R. Xin, and Z.Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK. Plant Soil 281:309-324. https://doi.org/10.1007/s11104-005-9641-3
  26. Ludvigsen, L., H.J. Albrechtsen, H. Holst, and T.H. Christensen. 1997. Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods. FEMS Microbiol. Rev. 20:447-460. https://doi.org/10.1111/j.1574-6976.1997.tb00329.x
  27. Mupondi, L.T., P.N.S. Mnkeni, and M.O. Brutsch. 2006. Evaluation of pine bark or pine bark with goat manure or sewage sludge cocomposts as growing media for vegetable seedlings. Compost Sci. Util. 14:238-243. https://doi.org/10.1080/1065657X.2006.10702291
  28. Nilsson, L.O., E. Baath, U. Falkengren-Grerup, and H. Wallander. 2007. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 153:375-384. https://doi.org/10.1007/s00442-007-0735-x
  29. Olsson, P.A., E. Baath, and I. Jakobsen. 1997. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl. Environ. Microb. 63:3531-3538.
  30. Park, S.J., M.H. Kim, and H.M. Shin. 2005. Agricultural process and food engineering : physical properties of rice husk. J. Biosyst. Eng. 30:229-234. https://doi.org/10.5307/JBE.2005.30.4.229
  31. Peacock, A.D., M.D. Mullen, D.B. Ringelberg, D.D. Tyler, D.B. Hedrick, P.M. Gale, and D.C. White. 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol. Biochem. 33:1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  32. Ros, M., J.A. Pascual, C. Garcia, M.T. Hernandez, and H. Insam. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38:3443-3452. https://doi.org/10.1016/j.soilbio.2006.05.017
  33. Stark, C., L.M. Condron, A. Stewart, H.J. Di, and M. O'Callaghan. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Appl. Soil Ecol. 35:79-93. https://doi.org/10.1016/j.apsoil.2006.05.001
  34. Tambone, F., P. Genevini, and F. Adani. 2007. The effects of shortterm compost application on soil chemical properties and on nutritional status of maize plant. Compost Sci. Util. 15:176-183. https://doi.org/10.1080/1065657X.2007.10702330
  35. Trois, C. and A. Polster. 2007. Effective pine bark composting with the Dome Aeration Technology. Waste Manage 27:96-105. https://doi.org/10.1016/j.wasman.2005.12.015
  36. Yao, H., Z. He, M.J. Wilson, and C.D. Campbell. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol. 40:223-237.