혐기소화 돈분 액비를 처리한 토양에서 배추의 생육과 비점오염원의 용탈 및 유거

Growth of Chinese Cabbage and Losses of Non-point Sources from Runoff and Leaching in Soils as Affected by Anaerobically Digested Liquid Pig Slurry

  • 노희명 (서울대학교 농생명공학부) ;
  • 최효정 (서울대학교 농생명공학부) ;
  • 윤석인 (서울대학교 농생명공학부) ;
  • 이민진 (서울대학교 농생명공학부) ;
  • 김재민 (서울대학교 농생명공학부) ;
  • 최홍림 (서울대학교 농생명공학부) ;
  • Ro, Hee-Myong (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Choi, Hyo-Jung (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Yun, Seok-In (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Lee, Min-Jin (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Kim, Jae-Min (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Choi, Hong-Lim (Department of Agricultural Biotechnology, Seoul National Univerisity) ;
  • Kun, Zhu (Department of Agricultural Biotechnology, Seoul National Univerisity)
  • 투고 : 2007.12.10
  • 심사 : 2008.01.25
  • 발행 : 2008.04.30

초록

돈분액비의 처리량이 배추 건중량 및 질소와 인의 이용률, 그리고 유거와 용탈에 의한 질소와 인의 유출 특성에 미치는 영향을 구명하기 위해 포트실험을 하였다. 작물은 토양에 돈분액비를 0, 6, 12, $18L\;pot^{-1}$ 처리한 후 50일 동안 재배하였다. 돈분액비 시비에 의해 배추의 건중량은 증가하였고 $12L\;pot^{-1}$ 처리하였을 경우 가장 크게 증가하였다. 그러나 돈분액비를 $18L\;pot^{-1}$ 처리하였을 경우 배추 건중량은 감소하였다. 이는 돈분액비의 과다시비로 토양의 염도가 증가했기 때문이라고 판단된다. 돈분액비를 $18L\;pot^{-1}$로 처리한 토양의 EC(1:5)는 $0.28dS\;m^{-1}$로 다른 처리구보다 유의적으로 높았다. 용탈수와 유거수에서 질소와 인의 농도는 돈분액비의 시비량이 증가함에 높아졌다. 작물의 생육을 증가시키면서 수계로의 비점오염원의 유출을 최소화하는 것을 고려할 때, 본 연구는 돈분액비를 농업적으로 이용하기 위해서는 작물과 지역의 특성을 고려한 적절한 시비량을 설정하는 것이 필요하다고 제안한다.

A pot experiment was conducted to study the effect of application rate of anaerobically digested pig slurry on the growth of Chinese cabbage and the outflow characteristics of N and P from leaching and runoff in the upland. Anaerobically digested pig slurry(ADPS) was applied rates of 0, 6, 12, and $18L\;pot^{-1}$, and Chinese cabbages were grown for 50 days. Dry matter yield of Chinese cabbage increased significantly at the rates of 6 and $12L\;pot^{-1}$, but decreased at the rate of $18L\;pot^{-1}$ due probably to the high salinity. The EC(1:5) of the soil receiving $18L\;pot^{-1}$ of anaerobically digested pig slurry was $0.28dS\;m^{-1}$, which was significantly higher than those receiving 6 and $12L\;pot^{-1}$ of anaerobically digested pig slurry. For the leachate and runoff, N and P concentration increased with the application rate of ADPS. Therefore, considering the dual goal of optimum crop growth and minimal discharge of non-point pollution sources to water system, this study suggests that a testing of a site-specific proper application rate of liquid pig slurry including ADPS is prerequisite to achieving optimum agricultural productivity while minimizing water quality degradatio.

키워드

참고문헌

  1. American Public Health Association. 1998a. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, D.C.
  2. American Public Health Association. 1998b. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, D.C.
  3. Beline, F., J. Martinez., C. Marol, and G. Guiraud. 1998. Nitrogen transformations during anaerobically stored 15N-labelled pig slurry. Bioresource Technology 64:83-88. https://doi.org/10.1016/S0960-8524(97)84352-0
  4. Ceotto, E., and P. Spallacci. 2006. Pig slurry applications to alfalfa: Productivity, solar radiation utilization, N and P removal. Field Crops Research. 95:135-155. https://doi.org/10.1016/j.fcr.2005.02.005
  5. Choudhary, M., L. D. Bailey, and C. A. Grant. 1996. Review of the use of swine manure in crop production: Effects on yield and composition on soil and water quality. Waste Management and Research. 14:581-595. https://doi.org/10.1177/0734242X9601400606
  6. Dambreville, C., T. Morvan, and J. C. Germon. 2008. N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agriculture, Ecosystems and Environment. 123:201-210. https://doi.org/10.1016/j.agee.2007.06.001
  7. De Smet, J., J. Wontroba., M. de Boodt, and R. Hartmann. 1991. Effect of application of pig slurry on soil penetration resistance and sugar beet emergence. Soil and Tillage Research. 19:297-306. https://doi.org/10.1016/0167-1987(91)90097-H
  8. Hong, C.J., and J.S. Kim. 1984. Biogas production from animal waste by compost heating-methane fermentation system. Korea J. Waste Management 1(1):79-92.
  9. Kang, B.G., I.M. Jeong, K.B. Min, and J.J. Kim. 1996. Effect of salt accumulation on the germination and growth of lettuce (Lactuca Sativa, L.). Korean J. Soil Sci. Fert. 29(4):360-364.
  10. Kim, J.G., G.B. Lee, D.B. Lee, S.B. Lee, and S.Y. Na. 2004. Influence of liquid pig manure on rice growth and nutrient movement in paddy soil under different drainage conditions. Korean J. Soil Sci. Fert. 37(2):97-103.
  11. KMA. 2007. Weather observation data. Korea Meteorological Administration
  12. Lee, J.T., I.J. Ha, H.D. Kim, J.S. Moon, W.I. Kim, and W.D. Song. 2006. Effect of liquid pig manure on growth, nutrient uptake of onion, and chemical properties in soil. Korean J. Hort. Sci. Technol. 24(2):148-156.
  13. Lee, J.Y. 2006. Policy direction for livestock manure management.
  14. Lee, S.B. 2007. Utilization of Slurry composting and biofiltration for Rice Cultivation Technology. National Institute Animal Science, Suwon, Korea.
  15. MAF. 2007. Statistical research annual report of agriculture and forestry. Ministry of Agriculture and Foresty. Seoul, Korea.
  16. MOE. 2007. Water Quality Conservation Act. Ministry of environment, Republic of Korea.
  17. NIAS. 2000. Development swine slurry evaporation system integrated aerobic and aerobic (SESA2) process. Research report of National Institute of Animal Science, p. 53-79, RDA, Suwon, Korea.
  18. RAD. 2000. Methods for chemical analysis of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea.
  19. Ro, H.M., L.S. Kim, M.J. Lee, H.J. Choi, and C.H. Park. Soil Moisture Regime Affects Variation Patterns in Concentration of Inorganic Nitrogen from Liquid Pig Manure during Aerobic Incubation. Korean J. Soil Sci. Fert. 41(1)
  20. Ro, H.M., W.J. Choi, E.J. Lee, S.I. Yun, and Y.D. Choi. 2002. Uptake Patterns of N and Pby Reeds (Phragmites australis) of Newly Constructed Shihwa Tidal Freshwater Marshes. Korean J. Ecol. Field Biol. 25(5):359-364. https://doi.org/10.5141/JEFB.2002.25.5.359
  21. SAS Institute. 1990. SAS/STAT guide for personal computers. Version 6.03. SAS Institute, Cary, N.C.
  22. Tani, M., N. Sakamoto., T. Kishimoto, and K. Umetsu. 2006. Utilization of anaerobically digested dairy slurry combined with other wastes following application to agricultural land. International Congress Series. 1293:331-334.
  23. Van der Stelt, B., E.J.M. Temminghoff., P.C.J. Van Vliet, and W.H. Van Riemsdijk. 2007. Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresource Technology. 98(18):3449-3455. https://doi.org/10.1016/j.biortech.2006.11.004
  24. Wild, A. 1981. Mass flow and diffusion. In the chemistry of soil process, New York.
  25. Zhang, H.C., Z. H. Cao., Q.R. Shen, and M.H. Wong. 2003. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region: I. Effect of phosphate fertilizer rate on P losses from paddy soil. Chemosphere. 50(6):695-701. https://doi.org/10.1016/S0045-6535(02)00207-2